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Abstract

A semi-in3nite crack growing along a straight line in an unbounded triangular-cell lattice
and in lattice strips is under examination. Elastic and standard-material viscoelastic lattices are
considered. Using the superposition similar to that used for a square-cell lattice (J. Mech. Phys.
Solids 48 (2000) 927) an irregular stress distribution is revealed on the crack line in mode II: the
strain of the crack-front bond is lower than that of the next bond. A further notable fact about
mode II concerns the bonds on the crack line in the lattice strip deformed by a ‘rigid machine’. If
the alternate bonds, such that are inclined di=erently than the crack-front bond, are removed, the
stresses in the crack-front bond and in the other intact bonds decrease. These facts result in irreg-
ular quasi-static and dynamic crack growth. In particular, in a wide range of conditions for mode
II, consecutive bond breaking becomes impossible. The most surprising phenomenon is the for-
mation of a binary crack consisting of two branches propagating on the same line. It appears that
the consecutive breaking of the right-slope bonds—as one branch of the crack—can proceed at a
speed di=erent from that for the left-slope bonds—as another branch. One of these branches can
move faster than the other, but with time they can change places. Some irregularities are observed
in mode I as well. Under the inAuence of viscosity, crack growth can be stabilized and crack
speed can be low when viscosity is high; however, in mode II irregularities in the crack growth
remain. It is found that crack speed is a discontinuous function of the creep and relaxation times.
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1. Introduction

Analytical solutions for crack propagation in a plane triangular-cell lattice were de-
rived for uniform straight line crack growth, that is, these solutions correspond to
the cutting of crack-path bonds with a given speed. The 3rst work along these lines
was published by Kulakhmetova et al. (1984) where the total dissipation was found
for the case of a sub-Rayleigh macrolevel-associated solution. Recently, the com-
plete set of the macrolevel-associated and the microlevel solutions for all crack speed
regimes, sub-Rayleigh, super-Rayleigh, intersonic and supersonic ones, was considered
by Slepyan (2001). Stability of crack propagation in this lattice was examined by
Marder and Liu (1993), Marder and Gross (1995) and Fineberg and Marder (1999).
Also, Kelvin-type viscoelastic square and triangular lattices were considered by Kessler
and Levine (1998, 2000), Kessler (1999) and Pechenik et al. (2000a,b). A square-cell
lattice made of a standard viscoelastic material was examined by Slepyan et al. (1999).
In these works, if numerical simulations of the lattice fracture were performed, the crack
path and the crack velocity were not prescribed in advance.
Note that mode II fracture admits intersonic crack propagation. This regime for an

elastic homogeneous material was considered in a number of works, in particular, in
Burridge et al. (1979), Freund (1979), Slepyan (1981), Broberg (1999), Gao et al.
(1999). Numerical simulations and experiments also show the possibility of intersonic
crack propagation (Rosakis et al., 1998, 1999; Needleman and Rosakis, 1999; Abraham
and Gao, 2000). Mode II for the triangular-cell lattice was recently considered by Gerde
and Marder (2001) and Slepyan (2001).
If slow crack growth in a discrete lattice is considered, the dynamic ampli3cation

factor can be found to play a crucial role in the process. For a stressed lattice with a
growing crack the question whether the crack can propagate slowly can be answered
based on the examination of an auxiliary transient problem as follows. Consider a
lattice with a crack whose faces are subjected to a suddenly applied self-equilibrated
pair of forces as in Fig. 2 (this transient problem is considered below). When the
forces are applied, the strain of the 3rst intact bond rises and develops tending to the
corresponding static value. If the strain approaches the static value but remains below
it at all times, the crack can grow slowly. Otherwise—in the case of the dynamic
factor manifestation—slow crack growth is impossible. This phenomenon was recently
studied based on mode III fracture in a square-cell lattice (Slepyan, 2000).
In the present paper, the role of the dynamic factor in modes I and II fracture of

the triangular-cell lattice is examined. It is of interest that in this study, an attempt to
extend the analysis to mode II has immediately led to an unexpected conclusion. It
appears that in statics the strain of the crack-front bond is lower than that of the next
bond. A further notable fact about mode II concerns the bonds on the crack line in the
lattice strip deformed by a ‘rigid machine’. If the alternate bonds, such that are inclined
di=erently than the crack-front bond, are removed, the stresses in the crack-front bond
and in the other intact bonds decrease. Although in the case of mode I the crack-tip
bond is stressed higher than the next one and the following, an irregular dependence
of the stress on the bond number is observed as well. These facts suggest uncommon
dynamic behavior of the crack and this is really observed in the numerical simulations
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where the crack propagation in elastic and viscoelastic triangular-cell lattice strip is
then under examination.
In the present work, some analytical examination of the triangular lattice with a

semi-in3nite crack is followed by numerical simulations where the crack path is pre-
scribed to be a straight line, but the time-dependent crack speed is not prescribed in
advance; instead a limiting elongation fracture criterion is used. Such a straight-line
crack growth can occur, in particular, in the case where the bonds on the crack
path are weaker than those outside. Note that weak-bond fracture was examined by
Ravi-Chandar and Knauss (1984) and Lee and Knauss (1989).
This formulation enables some uncommon fracture phenomena to be observed. The

most surprising dynamic phenomenon arising in mode II is the formation of a binary
crack consisting of two branches growing along the same line. It appears that the
consecutive breaking of the right-slope bonds proceeds at a speed di=erent from that
for the left-bend bonds. It looks as if these two branches of the binary crack are weakly
connected with each other. One of them can move faster than the other, but with time
they can change places. This and some other uncommon phenomena are discussed
below. In the examination of the role of viscosity in the crack propagation, it is found
in particular that crack speeds are discontinuous functions of the creep and relaxation
times. Also, it is learned how viscosity inAuences the dynamic factor.

2. The lattice

We consider static and transient crack problems for elastic and viscoelastic triangular-
cell lattices and lattice strips. Geometrically, the lattice is the same as the elastic
lattice in Slepyan (2001), where steady-state crack propagation was examined. Note
that a square-cell viscoelastic lattice was considered in Slepyan et al. (1999) and
Slepyan (2000).
In the triangular lattice (Fig. 1(a)), each particle of mass M is connected with six

neighbors by the same bonds, each of the length a and the static sti=ness E. Coordinates
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Fig. 1. The lattice: (a) the lattice and the coordinates, (b) the unit vectors.
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of the particles are de3ned by the position vector

x′ = mI0 + nI1; (1)

where m and n are integer numbers, and Ip; p=0; 1; : : : ; 5, are the unit vectors directed
from a given particle to the neighboring ones (Fig. 1(b)). In terms of the projections
onto x-, y-axis shown in Fig. 1(a) these vectors are

Ip = [cos(�p=3); sin(�p=3)]: (2)

In addition, we introduce unit vectors Ix and Iy directed along the x- and y-axis,
respectively. Therefore, we may use both the rectangular coordinates, x = m + n=2;
y =

√
3n=2, and the m; n-system.

The crack faces are formed by particles with n = 0 and −1. We denote the bond
elongation (or the lengthening of the distance between the corresponding particles) by
Qp(t; m; n):

Q0(t; m; n) = [u(t; m+ 1; n)− u(t; m; n)]I0;

Q1(t; m; n) = [u(t; m; n+ 1)− u(t; m; n)]I1;

Q2(t; m; n) = [u(t; m− 1; n+ 1)− u(t; m; n)]I2;

Q3(t; m; n) = [u(t; m− 1; n)− u(t; m; n)]I3;

Q4(t; m; n) = [u(t; m; n− 1)− u(t; m; n)]I4;

Q5(t; m; n) = [u(t; m+ 1; n− 1)− u(t; m; n)]I5: (3)

The corresponding bond is denoted by Bp(m; n) and the tensile force in this bond is
denoted as Tp(t; m; n).
The bonds are assumed to obey a standard viscoelastic law. In terms of the Laplace

transform with parameter s, the connection between the internal tensile force and elon-
gation of an intact bond is

TLp (s; m; n) = EÊQLp(s; m; n); Ê =
1 + �s
1 + �s

; (4)

where � and � are creep and relaxation times, respectively, and E is the elastic sti=ness.
In the long-wave approximation, the lattice corresponds to a two-dimensional, ho-

mogeneous, isotropic, viscoelastic body with density � = 2M=(
√
3a2), Poisson’s ratio

� = 1=3 and the complex sti=ness EÊ. The following velocities of the longitudinal,
shear and Rayleigh waves correspond to the slow-process sti=ness (Ê=1): c1=

√
9=8 c,

c2=
√
3=8 c and cR= 1

2

√
3−√

3 c, respectively, where c=a
√

E=M . The shear modulus
is � = �c22 =

√
3E=4.

In the following, we use nondimensional values associated with the natural units:
the particle mass (M =1), the bond length (a=1) and the bond static sti=ness (E=1).
In these terms, c is the speed unit (c=1), a=c is the time unit, �=2=

√
3, c1 =

√
9=8,

c2 =
√
3=8 and cR = 1

2

√
3−√

3.
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At the moment when the strain 3rst exceeds a critical value, Q∗, the bond is assumed
to disappear.

3. Superposition

As in the paper on a square-cell lattice (Slepyan, 2000) consider two problems.
The 3rst is the main problem for a homogeneous static state of a lattice stressed by
remote forces. The lattice contains a crack such that the bond B5(−1; 0) exists as the
crack front, and the bonds B4(m; 0) and B5(m; 0); m¿ 0; are also intact, while the bond
B4(−1; 0) and all the bonds at the left, B5(m; 0) and B4(m; 0); m6 − 2 do not exist
(Fig. 1(a)). Let us enumerate the crack-path bonds ahead of the crack beginning from
the crack-front bond B5(−1; 0) as shown in Fig. 1(a)

B0 = B5(−1; 0); B1 = B4(0; 0); B2 = B5(0; 0); : : : (5)

and the respective tensile forces as

T0(t) = T5(t;−1; 0); T1(t) = T4(t; 0; 0); T2(t) = T5(t; 0; 0); : : : ; (6)

where we take t = 0 for this static problem. Note that in the elastic case the nondi-
mensional tensile force and the respective elongation of any intact bond are equal to
each other, Tj(t)=Qj(t) (we use the same numbering for the crack-path elongation as
for the tensile force).
The second is an auxiliary dynamic problem for the same, but initially unstressed

lattice with the crack extended due to the destruction of the zero bond, B0. This lattice,
being initially at rest, at t = 0 is suddenly loaded by the force P = T0(0)I2 applied to
the particle with m=−1; n=0, and the same but opposite force, T0(0)I5, applied to the
particle with m=0; n=−1, Fig. 2. Let us denote the tensile forces on the crack line in
this auxiliary problem by T+j (t)T0(0). Note that the functions T+j (t) are independent
of T0(0) since a linear problem is considered.
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Fig. 2. Forces in the auxiliary problem.
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Further consider the resulting problem. It corresponds to the 3rst one where the
crack-front bond B0 disappears at t = 0 because the total crack-face forces corre-
sponding to this bond are zero for t ¿ 0. This problem relates to very slow crack
growth when the time interval between the destruction of neighboring bonds is large
enough to permit the lattice to approach the static state before the next bond is
broken.
The tensile forces in the intact bonds are thus

Tj(t) = Tj(0) + T+j (t)T0(0) (j¿ 1): (7)

For the 3nal static state we thus have

Tj(∞) = Tj(0) + T+j (∞)T0(0) (j¿ 1): (8)

3.1. Superposition paradox

In the considered homogeneous static problem, after the bond B0 is removed the
distribution of the tensile forces relative to the crack front remains completely the
same in the case of mode I and only changes sign in the case of mode II. This follows
directly from symmetry of the lattice. Thus,

Tj(∞) = Tj−1(0) (mode I);

Tj(∞) =−Tj−1(0) (mode II): (9)

Referring to Eq. (8) we get

T1(0) = T0(0)[1− T+1 (∞)] (mode I);

T1(0) =−T0(0)[1 + T+1 (∞)] (mode II): (10)

We face a paradoxical result: in one of these two modes the tensile force in the
second bond is higher than that in the crack front bond. So, if the tensile force T0(0)
in mode I is maximal at the crack front, T1(0)¡T0(0), then T+1 (∞)¿ 0 and for mode
II the opposite inequality is true:

|T1(0)|¿ |T0(0)|: (11)

Otherwise, if one expects that T+1 (∞)¡ 0, the last conclusion is valid for mode I.
As shown below, T+1 (∞)¿ 0 and hence a surprising result arises for mode II. In

fact, the tensile force in the second bond (j = 1) appears to be equal to −5=4 of that
for the 3rst one (j = 0). Thus, if mode II fracture for the lattice stressed by remote
forces is considered, the second bond must break before the 3rst one. Note that in the
case of di=erent limits for extension and compression, this irregular mode of fracture
will at least alternate with the regular one during the crack growth.
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4. Transient problem for an intact viscoelastic lattice

4.1. Equations and transformations

The dynamic equation for a particle is(
1 + �

d
dt

)
d2u(t; m; n)

dt2
−
(
1 + �

d
dt

) 5∑
p=0

Qp(t; m; n)Ip

=
(
1 + �

d
dt

) 5∑
p=0

Pp(t; m; n)Ip; (12)

where Pp are external forces and, as already noted, � and � are creep and relaxation
times, respectively. In terms of the Laplace transform

uL(s; m; n) =
∫ ∞

0
u(t; m; n)e−st dt (13)

the equation is

s2uL(s; m; n)− Ê
5∑

p=0

QLp(s; m; n)Ip =
5∑

p=0

PLp(s; m; n)Ip; Ê =
1 + �s
1 + �s

: (14)

Further, we use the double discrete Fourier transform with respect to m and n

uLFF(s; k; q) =
∞∑

m=−∞

∞∑
n=−∞

uL(s; m; n) exp[i(km+ qn)]: (15)

We get

s2uLFF(s; k; q)− Ê
5∑

p=0

QLFFp (s; k; q)Ip =
5∑

p=0

PLFFp (s; k; q)Ip: (16)

In the following, the external forces are assumed to be applied only to lines n=0 and
−1 as

P1(t; m; 0)I1; P2(t; m; 0)I2; P4(t; m;−1)I4; P5(t; m;−1)I5 (17)

with

P4(t; m;−1) = P1(t; m; 0); P5(t; m;−1) = P2(t; m− 1; 0); (18)

that is, these forces are self-equilibrated. In this case, Eq. (16) becomes

s2uLFF(s; k; q)− Ê
5∑

p=0

QLFFp (s; k; q)Ip

=(I1 + e−iqI4)PLF1 (s; k; 0) + (I2 + e
i(k−q)I5)PLF2 (s; k; 0)

=(1− e−iq)PLF1 (s; k; 0)I1 + (1− ei(k−q))PLF2 (s; k; 0)I2: (19)
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The x ; y-projections of this equation are

s2uLFFx (s; k; q)− Ê
5∑

p=0

QLFFp (s; k; q)IpIx

=
1
2
[(1− e−iq)PLF1 (s; k; 0)− (1− ei(k−q))PLF2 (s; k; 0)];

s2uLFFy (s; k; q)− Ê
5∑

p=0

QLFFp (s; k; q)IpIy

=

√
3
2
[(1− e−iq)PLF1 (s; k; 0) + (1− ei(k−q))PLF2 (s; k; 0)] (20)

with

QLFF0 (s; k; q) = (e−ik − 1)uLFF(s; k; q)I0;
QLFF1 (s; k; q) = (e−iq − 1)uLFF(s; k; q)I1;
QLFF2 (s; k; q) = (ei(k−q) − 1)uLFF(s; k; q)I2;
QLFF3 (s; k; q) = (eik − 1)uLFF(s; k; q)I3;
QLFF4 (s; k; q) = (eiq − 1)uLFF(s; k; q)I4;
QLFF5 (s; k; q) = (e−i(k−q) − 1)uLFF(s; k; q)I5 (21)

and

IpIx = cos(�p=3); IpIy = sin(�p=3): (22)

We come to the following equations:

[Y + 1 + 4 sin2 k=2− cos k=2 cos(q− k=2)]uLFFx (s; k; q)

+
√
3 sin k=2 sin(q− k=2)uLFFy (s; k; q)

=
1

2Ê
[(1− e−iq)PLF1 (s; k; 0)− (1− ei(k−q))PLF2 (s; k; 0)];

√
3 sin k=2 sin(q− k=2)uLFFx (s; k; q)

+ [Y + 3(1− cos k=2 cos(q− k=2))]uLFFy (s; k; q)

=

√
3

2Ê
[(1− e−iq)PLF1 (s; k; 0) + (1− ei(k−q))PLF2 (s; k; 0)]; (23)

where Y = s2=Ê. From this and Eqs. (21) it follows that

QLFF4 =
1
 
{2(1− cos q)[2Y + 6 sin2 k=2 + 3(1− cos(q− k))]PLF1 (s; k; 0)

+ (eiq − 1)(ei(k−q) − 1)(Y + 6 sin2 k=2)PLF2 (s; k; 0)};
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QLFF5 =
1
 
{(e−iq − 1)(e−i(k−q) − 1)(Y + 6 sin2 k=2)PLF1 (s; k; 0)

+2[1− cos(q− k)][2Y + 6 sin2 k=2 + 3(1− cos q)]PLF2 (s; k; 0)};

 = 6Ê[(n1 − cos(q− k=2))(n2 − cos(q− k=2))]; (24)

where

n1 = b−
√

b2 − d; n2 = b+
√

b2 − d;

b= (1 + 2 sin2 k=2 + 2
3Y ) cos k=2;

d= 1 + 3 sin2 k=2 + 1
3Y (4 + 4 sin

2 k=2 + Y );

b2 − d=
1
9
Y 2 − 4 sin2 k

2

(
sin2

k
2
+
1
3
Y
)2

: (25)

4.2. Fundamental solution

Let us introduce a combination of the functions, QLFF4 and QLFF5 , as

QLFF(s; k; q) = QLFF4 (s; k; q) + eik=2QLFF5 (s; k; q): (26)

Now consider the inverse Fourier transform with respect to q for n= 0

QLF(s; k; 0) =
1
2�

∫ �

−�
QLFF(s; k; q) dq: (27)

In this integral, one can substitute q = q′ + k=2. Since the integrand is a 2�-periodic
function of q, the integration limits can be retained. As a result, one obtains

QLF(s; k; 0) =
1
2�

∫ �

−�
S(s; k; q)PLF(s; k) dq; (28)

where

PLF(s; k) = PLF1 (s; k; 0) + e
ik=2PLF2 (s; k; 0) (29)

and

S =
1
 0
[3(cos k=2− cos q)2 + 2(1− cos k=2 cos q)(Y + 3 sin2 k=2)

+ (cos k=2− cos q)(Y + 6 sin2 k=2];

 0 = 3Ê(n1 − cos q)(n2 − cos q): (30)

Note that S is a regular function of q for Jk = 0; Y ¿ 0, since under these conditions
n21;2¿ 1 if Jn1;2 = 0.
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We come to the following fundamental solution:

QLF(s; k; 0) =
1

Ê
[1− 1=L(s; k)]PLF(s; k);

L(s; k) =
3(n1 − n2)

√
n21 − 1

√
n22 − 1

(%+  n1)
√

n22 − 1− (%+  n2)
√

n21 − 1

=
3
√

n21 − 1
√

n22 − 1(
√

n21 − 1 +
√

n22 − 1)
 
√

n22 − 1(
√

n21 − 1 +
√

n22 − 1)− (%+  n2)(n1 + n2)
;

%= Y cos k=2− 6(1− cos k=2) sin2 k=2 + 4Y cos2 k=2− 6Y − Y 2;

 = 2Y cos k=2− 6(1− cos k=2) sin2 k=2− Y: (31)

5. Lattice with a crack

5.1. Governing equation

Let us represent

PLF(s; k) = ÊQ−(s; k) + PLF(s; k); (32)

where

Q−(s; k) = QLF(s; k; 0)− Q+(s; k) =
−1∑

m=−∞
QL(s; m; 0) (33)

and PLF(s; k) is the double transform of the rest of the external forces. We now come
to a solution for the lattice with a crack, that is the lattice without bonds B4(m; 0) and
B5(m; 0) for m¡ 0 (Fig. 2), since their action on the lattice is compensated by the
3rst term on the right-hand side of Eq. (32). We obtain the governing equation as

L(s; k)Q+ + Q− = [L(s; k)− 1]PLF(s; k)=Ê: (34)

5.2. Factorization

To resolve this equation the Green function, L(s; k), should 3rst be factorized, that
is presented as

L(s; k) = L+(s; k) (L−(s; k)); (35)

where L+(s; k) (L−(s; k)) is a regular function in the upper (lower) half-plane of the
complex-valued variable k. This can be done using an analogue of the Cauchy-type
integral for a periodic function. Eatwell and Willis (1982) and Slepyan (1982) showed
that any nonnegative, periodic function L(k) (in our case, the period is equal to 4�)
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with locally integrable ln L(k) can be factorized as follows (Arg L= 0):

L±(s; k) = exp

[
1
4�

∫ 2�

−2�
ln L(s; ')(±('− k) d'

]
;

(+(k) =
∞∑
�=0

e−ik�=2 = (1− e−ik=2)−1 (Jk¿ 0);

(−(k) =
−1∑

�=−∞
e−ik�=2 = eik=2(1− eik=2)−1 (Jk6 0): (36)

In these terms, the governing equation (34) can be presented as

L+(s; k)Q+ +
Q−

L−(s; k)
= [L+(s; k)− 1=L−(s; k)]PLF(s; k)=Ê; (37)

where Jk = 0.
We now take the crack-face load to consist of two self-equilibrated forces as in

Fig. 2

P2(t;−1; 0)I2 and P5(t; 0;−1)I5: (38)

Then, in accordance with Eq. (29),

PLF(s; k) = PL(s)e−ik=2 [PLF2 (s; k; 0) = PL(s)e−ik ; PLF1 (s; k; 0) = 0]: (39)

Next, we have to consider the right-hand side of Eq. (37) to separate the terms
which can be marked by the subscript ‘+’ and ‘−’. Eq. (37) can be presented as
follows:

L+(s; k)Q+(s; k) +
Q−(s; k)
L−(s; k)

= C+(s; k) + C−(s; k)− 1
L−(s; k)

PL(s)

Ê
e−ik=2; (40)

where the last term and C− correspond to functions with the support m=−1=2;−1; : : : ;
while the support of C+ is m= 0; 1=2; 1; : : : . The sum is

C+ + C− = C =
PL(s)

Ê
L+(s; k)e−ik=2: (41)

5.3. Division of the right-hand side

Note that the function L+ can be presented as a series

L+(s; k) =
∞∑
�=0

l�(s)eik�=2 (42)

and hence

L+(s; k)e−ik=2 = l0(s)e−ik=2 +
∞∑
�=1

l�(s) exp[ik(�− 1)=2]: (43)
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Thus,

C+(s; k) =
PL(s)

Ê

∞∑
�=1

l�(s) exp[ik(�− 1)=2)] = PL(s)

Ê
[L+(s; k)− l0(s)]e−ik=2;

C−(s; k) =
PL(s)

Ê
l0(s)e−ik=2: (44)

In turn, as follows from Eq. (36)

l0(s) = exp

[
1
4�

∫ 2�

−2�
ln L(s; k) dk

]
: (45)

5.4. Solution of the auxiliary problem

Now, if the elongation of the bonds on the crack continuation is to be found, the
solution is

Q+(s; k) =
PL(s)

Ê

[
1− l0(s)

L+(s; k)

]
e−ik=2: (46)

To 3nd solutions for some bonds in a vicinity of the crack front we rewrite expression
(36) for 1=L+(s; k) in the following form (Jk ¿ 0):

1=L+(s; k) = exp

[
−

∞∑
�=0

a�(s)eik�=2
]

=
1
l0
exp

[
−

∞∑
�=1

a�(s)eik�=2
]
;

a�(s) =
1
4�

∫ 2�

−2�
ln L(s; ')e−i'�=2 d': (47)

Thus,

Q+(s; k) =
PL(s)

Ê

{
1− exp

[
−

∞∑
�=1

a�(s)eik�=2
]}
e−ik=2

=
PL(s)

Ê
[a1(s) + (a2(s)− a21(s)=2)e

ik=2

+ (a3(s)− a1a2 + a31(s)=6)e
ik + · · · ] (48)

and the elongations of the crack-path bonds are represented by the coePcients of this
exponential series

QL1 (s) =
PL(s)

Ê
a1(s);

QL2 (s) =
PL(s)

Ê
[a2(s)− a21(s)=2];
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QL3 (s) =
PL(s)

Ê
[a3(s)− a1a2 + a31(s)=6];

QL4 (s) =
PL(s)

Ê
[a4(s)− a1(s)a3(s)− a22(s)=2 + a2(s)a21(s)=2− a41(s)=24];

QL5 (s) =
PL(s)

Ê
[a5(s)− a1(s)a4(s)− a3(s)a2(s)

+ a3(s)a21(s)=2 + a1(s)a22(s)=2− a2(s)a31(s)=6 + a51(s)=120];

QL6 (s) =
PL(s)

Ê
[a6(s)− a1(s)a5(s)− a4(s)a2(s)

+ a4(s)a21(s)=2− a23(s)=2 + a3(s)a1(s)a2(s)

− a3(s)a31(s)=6 + a32(s)=6− a22(s)a
2
1(s)=4

+ a2(s)a41(s)=24− a61(s)=720] (49)

and so on.

6. Solutions for statics

6.1. The auxiliary problem

For the static problem s= 0 and Eq. (31) for L yields

L(0; k) =
A
√
16 cos2 k=2− 8 cos4 k=2− 5 + A√

22 sin k=2[1 + (3 + 4 cos k=2− A) sin k2 k=4]
;

A=
√
9 + 16 sin2 k=2¿ 0: (50)

From this the coePcients a� = a�(0) (47) can be expressed as

a� =
1
2�
[1 + (−1)�] + 1

4�

∫ 2�

0
ln[L0(k)]2 cos(k�=2) dk;

L0(k) =
A
√
16 cos2 k=2− 8 cos4 k=2− 5 + A√

2[1 + (3 + 4 cos k=2− A) sin2 k=4]
: (51)

Note that ln[L0(k)]2 is a regular continuous function suitable for numerical integration.
In fact, L0(k) is a positive function; we write here 1=2 ln[L0(k)]2 to ensure against
possible error in the determination of the sign of the square root in the numerator
(it changes sign simultaneously with the denominator). The integration results are as
follows:

� 1 2 3 4 5 6

a� 1/4 0.40204668 0.02083333 0.23872244 0.003125000 0.16487307
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Fig. 3. Static distribution of the tensile forces in the auxiliary problem: (a) the coePcients a�, (b) the
normalized tensile forces T+j .

(Probably, a� for odd � are rational numbers: a1 = 1=4; a3 = 1=48; a5 = 1=320; : : : :)
Now the normalized tensile forces, T+j = T+j (∞) = Tj(∞)=T0(0), can be found to be
j 1 2 3 4 5 6

T+j 1/4 0.37079668 −0:077074171 0.16509454 −0:045114208 0.085767743

The distributions of a� and T+j are shown in Fig. 3.
The solution obtained here allows us to determine the distribution of the tensile

forces ahead of the crack.

6.2. Mode I

Consider a lattice with a semi-in3nite crack under mode I deformation caused by
remote external forces. In this case, due to symmetry of the lattice, if the 3rst bond,
B0, disappears, then the tensile force distribution remains the same as in the initial
state, but with a one-bond translation, that is, it remains the same relative to the bond
at the crack front. This is a distinctive feature of mode I fracture in the triangular-cell
lattice. Using superposition with the solution obtained in the previous section, we can
write down a recurrence relation for the distribution:

Tj + T+j T0 = Tj−1; j = 1; 2; : : : : (52)
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Fig. 4. Static distribution of the tensile forces: (a) mode I, (b) mode II.

Thus, the distribution is

j 1 2 3 4 5 6

Tj=T0 3=4 0.37920332 0.45627749 0.29118295 0.24606874 0.16030100

So, in mode I, the tensile forces non-monotonically decrease with the distance from
the crack-front bond, and what is most important, the force reaches maximum at the
3rst bond (Fig. 4(a)).

6.3. Mode II

In contrast, in the case of mode II, when the 3rst bond, B0, disappears, the tensile
force distribution in addition to the translation changes sign. The relation is now

Tj + T+j T0 =−Tj−1; j = 1; 2; : : : (53)
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and this leads to the ‘paradoxical’ distribution where the second bond is deformed
more than the 3rst:

j 1 2 3 4 5 6

Tj=T0 −5=4 0:87920332 −0:80212915 0.63703461 −0:68214882 0.59638107

The distribution is shown in Fig. 4(b). We thus face an anomalous distribution where
the second bond tensile force, T1, is greater than the crack-front one, T0. This suggests
an irregular behavior of mode II crack. Indeed, if the critical compressive and tensile
forces satisfy the inequalities

4
5
¡T ∗

compressive=T
∗
tensile¡

5
4

(54)

then the second bond must break before the 3rst one. Otherwise, such irregular mode
of fracture will, at least, alternate with the regular one during slow crack growth.
Indeed, in one step of the crack growth, the distribution remains the same (relative
to the crack front) but compression is replaced by extension and vice versa. So, if in
a crack position the crack-front bond is broken before the second one, then after this
the crack-front bond appears to be stronger than the second one and the latter must
break previously. No wonder that this irregularity results in an irregular behavior of
the crack in dynamics as well.

7. Numerical simulations of crack propagation in a lattice strip

Transient problems are examined numerically using a 3nite lattice strip. In the aux-
iliary problem, as well as in a modi3ed auxiliary problem considered below, the 3eld
induced by the local self-equilibrated load decreases fast with the distance. This allows
us to use a 3nite lattice of moderate sizes, and the dynamic behavior of several bonds
on the crack line appear to be close to that for the in3nite lattice—with good accuracy.
In contrast, for the crack propagation problems it was important that the strip width
is 3nite. Along with this, the qualitative results appear to be strip-width-independent.
We keep here the weak-bond fracture formulation allowing only the bonds between
the layers n= 0 and 1 to be broken when the elongation reaches the critical value.

7.1. The auxiliary transient problem

A problem similar to that formulated in Sections 3 and 5.4 for the in3nite lattice
was then considered for a lattice strip with 3xed boundaries. The lattice strip with a
crack was assumed to be suddenly loaded by a couple of self-equilibrated unit forces
shown in Fig. 2. The dynamics of the 3rst 3ve bonds on the crack continuation was
examined. The strip sizes were taken so large (up to |m|6 100; |n|6 50) that the
results are insensitive to the reAection from the boundary with accuracy up to the
sixth signi3cant digit. The same requirement was satis3ed for the modi3ed auxiliary
problem (see below). This was checked by lattice size variation and by comparison
of the results for a large time with those found analytically for the in3nite lattice in
statics.
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Fig. 5. Elastic bond elongation in the transient auxiliary problem. The dotted lines correspond to the static
values found analytically.

The goal of the numerical examination of the auxiliary problems was (a) to describe
how the irregular distribution of the tensile forces found analytically in statics is es-
tablished, (b) to determine the inAuence of viscosity on this process and (c) to obtain
the separation between the domains of the static amplitude response (SAR) and the
dynamic overshoot response (DOR) on the plane of the creep and relaxation times—as
was done for the mode III square-cell lattice in Slepyan (2000).
The transient problem results for the elastic lattice are shown in Fig. 5 where the

dotted lines correspond to the static values found analytically (see Section 6.1 and
Fig. 3(b)). Recall that the units are used such that tensile forces and elongations in
the elastic lattice coincide. With the above-mentioned accuracy numerically obtained
values of Q1(t) coincide with the corresponding static values T+1 for t ¿ 30 (recall
that T+j = T+j (∞)). The dynamic ampli3cation factor for the 3rst bond is found to be
equal to 1.229.
In an initial stage of the process, the second bond elongation is lower than the

3rst, but then it becomes higher. Also the dynamic factor for the second bond is
somewhat greater; it is equal to 1:330. It is of interest that for even bonds the am-
plitudes of the oscillations of Qj relative to the static values are higher and the
frequencies are considerably lower than those for the odd bonds. The second bond
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Fig. 6. The 3rst two viscoelastic bond elongation in the transient auxiliary problem. Solid curves:
� = 1:0; � = 0:25; dashed curves: � = 1:0; � = 0:5 (1. j = 1, 2. j = 2).

elongation approaches the static value with the above-mentioned accuracy when
t ¿ 42.
An example of the 3rst two bonds elongations for a lattice made of the standard

viscoelastic material is presented in Fig. 6. It can be seen that in the case �=1; �=0:25
there is no overshoot; this pair falls into the SAR domain, while the pair �=1; �=0:5
belongs to the DOR domain.
Mode II tensile force distribution (see Section 6.3 and Fig. 4(b)) suggests irregular

crack growth, namely, if, under high viscosity, the crack grows slowly, then the second
bond can break before the 3rst one (recall that the bonds are numbered beginning from
the crack front). The 3rst bond breaks soon thereafter. Then the time-interval till the
next break is as large as the averaged (macrolevel) crack speed is low. Thus, the crack
advance appears to be a repeated two-step process as ‘the second bond break—a short
time-interval—the 3rst bond break—a long time-interval’, and so on.
To analyze the dynamic factor manifestation in such a process the formulation of

the auxiliary problem related to mode II is modi3ed. Let us suggest that a couple of
the bonds, the crack-front bond and the next one, break simultaneously. To model the
transient process arising as a result of such double break we have to apply two pairs
of forces: P0 and P1 as shown in Fig. 7(a). The former reAects the front bond break
(numbered 0) as in the above auxiliary problem, while the latter (numbered 1) reAects
the next bond break. In accordance with the initial tensile forces in mode II we take
P0 = 1; P1 = 1:25. First, we consider an elastic lattice strip. The dynamic elongation
of the 3rst four intact bonds is shown in Fig. 7(b). It can be seen that elongations in
alternate bonds have opposite signs. Contrary to the one-break auxiliary problem, the
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Fig. 7. The modi3ed auxiliary problem: (a) external forces, (b) elastic bond transient elongation. The
dashed lines correspond to the static values, Q2(∞) ≈ 0:240; Q3(∞) ≈ −0:418; Q4(∞) ≈ 0:205;
Q5(∞) ≈ −0:196.

dynamic factor for the 3rst intact bond, j = 2, equal to 1.517 is greater than that for
the second which is equal to 1.069.
An example of the dynamic elongation of the 3rst two intact viscoelastic bonds is

shown in Fig. 8. In the case �=0:5, �=0:4, an overshoot is revealed for both elongations
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Fig. 8. Viscoelastic bond elongation in the modi3ed transient auxiliary problem. Solid curves: �=0:5, �=0:2;
dashed curves: � = 0:5, � = 0:4.

Q2 and Q3. So, this pair lies in the DOR domain. In the case � = 0:5, � = 0:2, an
overshoot is observed only for Q2; however, the absolute value of Q3 is signi3cantly
greater than Q2. Taking this into account we de3ne the domain, whether the couple of
the viscosity times belongs to the DOR or to the SAR domain, based on the behavior
of the highest elongation, Q3. The latter case thus belongs to the SAR domain.
The SAR=DOR interfaces corresponding to the auxiliary problem (curve I) and the

modi3ed, double-break auxiliary problem (curve II) are shown in Fig. 9. The SAR
domain lies beneath the corresponding curve, while the DOR domain lies above it.

7.2. Mode I crack propagation

A lattice strip was considered with the sizes up to |m|6 1100; |n|6 50, while the
main numerical simulations were performed for the strip |m|6 400; |n|6 10. Two
static states were introduced. In the initial state (denoted as S1) the two families of
slope bonds were uniformly lengthened by the given elongation Q0, while the hori-
zontal bonds remained at rest. After this the strip boundaries were 3xed. At moment
t = 0, a ‘semi-in3nite’ crack was introduced, that is the bonds B4(j; 0); j6 − 1 and
B5(j; 0); j6 − 2 were removed as in Fig. 1(a). Under the inAuence of viscosity, the
dynamic process caused by this action settled down and a new static state was ap-
proached. We denote it as S2. In this latter state, the distribution of the elongations of
the intact bonds on the crack line, j = 0; 1; : : : ; is under our attention. The maximum
of the absolute value of these elongations is denoted by Q0∗. Note that in mode I this
maximum appears at the 3rst intact bond, j = 0. Further, the critical elongation Qc
is introduced which determines the elongation resulting in the bond destruction. We
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Fig. 9. SAR=DOR domains separation. Curves I and II correspond to modes I and II, respectively. The SAR
domain lies beneath the corresponding curve, while the DOR domain lies above it.

do not consider the trivial case Q0¿Q0∗ and hence to get the crack propagation we
have to assume that Q0¡Qc¡Q0∗. The limiting elongation Qc is 3xed; without loss
of generality we take Qc = 1.
Under the same Q0 the value of Q0∗ appeared to be proportional to the square root

of the strip width, which is in agreement with the conclusion following from energy
considerations. Simulations were performed for the strips with |n|6N; N =10; 20 and
50. It was found that peculiarities of crack propagation are controlled by the values of
Q0 and Q0∗. If these values are 3xed, no qualitative inAuence of the strip width on the
crack propagation was observed.
Some results related to mode I crack propagation are shown in Figs. 10–16. We

took N = 10. This resulted in Q0∗ = 2:405Q
0. The latter, Q0, was varying in the range

1=2:405 ≈ 0:416¡Q0¡ 1 (for the lower bound Q0∗ is equal to the limiting elongation).
In these 3gures, the dotted lines correspond to the long Rayleigh wave speed, cR =
1
2

√
3−√

3 ≈ 0:563, while the dash-dotted lines correspond to the long longitudinal
wave speed, c1 =

√
9=8 ≈ 1:061.

Let us denote by t(j) the jth bond break time counted from the moment when the
crack started to propagate. Ray-like curves in Figs. 10 and 12–14 are dependences
obtained by successive joining of the corresponding discrete values. In Fig. 10, these
dependences are shown for various initial elongations Q0 for the elastic lattice strip.
The hollow (solid) circles are related to the even (odd) bonds (in Figs. 10(a),(b) each
bond is marked by a circle, while in Figs. 10(d)–(f) the curves t(j) connecting the cor-
responding bonds are marked). As can be seen in Figs. 10 and 12–14, a transient stage
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Fig. 10. Bond-break time versus the bond number for mode I fracture of the elastic strip. The odd bonds
are marked by hollow circles and the even bonds are marked by solid circles. The dotted lines correspond
to the long Rayleigh wave speed, while the dash-dotted lines correspond to the long longitudinal wave
speed: (a) Q0 = 0:416667 (Q0∗ = 1:00189), (b) Q0 = 0:5 (Q0∗ = 1:20226), (c) Q0 = 0:6 (Q0∗ = 1:44272),
(d) Q0 = 0:9 (Q0∗ = 2:16408), (e) Q0 = 0:935 (Q0∗ = 2:24824), (f) Q0 = 0:95 (Q0∗ = 2:28430).

of the crack propagation is followed by a quasi-steady regime which is characterized
by almost straight-line parts of the dependences.
In general, the bonds break in order; however, we met a situation where it was not

so. It appeared that a di=erence can exist between the speeds of fracture of the odd
and even bonds. In such a case, there exists a binary crack consisting of two branches
expanding along the same line. This phenomenon suggests the introduction of two
speeds, one, v1, for the odd-bond branch and another, v2, for the even-bond branch.
Although this phenomenon is most pronounced for mode II crack propagation, it can
manifest itself in mode I as well. In the latter case, this can happen within a rather
narrow range of the initial state parameters. Three cases are revealed in the analysis
of the crack propagation:

(i) The speeds are equal, v1=v2, and there is no time delay in the successive breaking
of the odd and even bonds. In this regular case, a single crack speed exists,
v= v1 = v2 and the conventional de3nition of the crack is valid.

(ii) The speeds are equal, v1 = v2; however, a small but visible distance between the
fronts of the two crack branches exists. This is a one-speed binary crack. From
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Fig. 12. The gap in the elastic mode I crack speed. 1. Q0 = 0:4167, 2. Q0 = 0:5, 3. Q0 = 0:765616, 4.
Q0 = 0:765617, 5. Q0 = 0:8, 6. Q0 = 0:95 . The dotted lines correspond to the long Rayleigh wave speed,
while the dash-dotted lines correspond to the long longitudinal wave speed.

the macrolevel point of view it is regular crack propagation with a 3xed ‘fracture
process zone’.

(iii) The speeds are not equal, v1 	= v2. This is a real two-speed binary crack.
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Fig. 13. Mode I crack propagation in the viscoelastic lattice strip with �=0. Dependences j(t) for (a) �=1,
(b) �=2. 1. Q0 = 0:4167, 2. Q0 = 0:5, 3. Q0 = 0:7, 4. Q0 = 0:8, 5. Q0 = 0:9, 6. Q0 = 0:95. (c) Crack speed
versus Q0; the values of �(� = 0; 1; 2) are shown.

These three cases are presented in Fig. 10. The 3rst case (i) is realized in the
interval 0:416¡Q0¡ 0:766 (1¡Q0∗ ¡ 1:841). In this interval the crack speed varies
increasing together with Q0 up to a value somewhat higher than cR. Examples are
presented in Fig. 10(a)–(c).
The next case, (ii) corresponds to a relatively strong initial elongation, Q0¿ 0:766

(Q0∗ ¿ 1:841). When Q0 exceeds this value, the crack speed jumps to a close vicinity
of the long longitudinal wave speed, c1 (as reAected in Fig. 12). The crack speed re-
mains approximately equal to c1 in the elongation range 0:766¡Q0¡ 0:925 and then
increases as Q0 increases, Figs. 10(d)–(f). Note that the ‘experimental’ fact that the
interval cR¡v¡c1 is forbidden is in agreement with the theoretical results obtained



L.I. Slepyan, M.V. Ayzenberg-Stepanenko / J. Mech. Phys. Solids 50 (2002) 1591–1625 1615

0 100 200
0

50

100

4

6 5
3

2

1

t

j

0 50 100
0

50

100

6 5 4 3 2 1

t

j

0 200 400
0

100

200

6

4 3

1,25

t

j

0 50 100
0

50

100

6 5 4

2,3

1t

j

(a) (b)

(c) (d)

Fig. 14. Mode I crack propagation in the viscoelastic lattice strip with the speed discontinuities: (a) Q0=0:5;
1. �= 0, 2. �= 0:25, 3. �= 1, 4. �= 2, 5. �= 5, 6. �= 10. (b) Q0 = 0:7; 1. �= 0, 2. �= 0:25, 3. �= 1, 4.
�=2, 5. �=5, 6. �=10; (c) Q0 =0:8; 1. �=0, 2. �=0:1, 3. �=0:141, 4. �=0:142, 5. �=1, 6. �=2; (d)
Q0 = 0:9; 1. �=0, 2. �=0:25, 3. �=0:355, 4. �=0:356, 5. �=1, 6. �=2. The dotted lines correspond to
the long Rayleigh wave speed, while the dash-dotted lines correspond to the long longitudinal wave speed.

for steady-state crack propagation in the in3nite triangular lattice, see Slepyan
(2001).
Case (iii) is realized if Q0 falls within a narrow range, 0:93¡Q0¡ 0:94 (see

Fig. 10(e)). The speeds are v1 ≈ 1:06; v2 ≈ 1:09. Note that this case is exceptional for
mode I crack propagation, while it is more common for mode II (see below).
In a di=erent form, the dependences of Fig. 10(e) are shown in Fig. 11, where the

crack-path layer with broken bonds removed is represented for a set of time-moments.
In the initial crack propagation stage, the space delay between fracture fronts corre-
sponding to the odd and even bonds is equal to two-bond distance (Fig. 11(a), t ≈
9:00), while it continuously increases in the quasi-steady-state stage as shown in Fig.
11(b). For example, the space delay increases to nine-bond distance at t ≈ 155. The
main e=ect found for mode I crack propagation is a gap in the crack speeds between
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Fig. 16. Mode I crack speed versus relaxation time, �: (a) � = 1; (b) � = 2. 1: Q0 = 0:5, 2: Q0 = 0:9.

the Rayleigh and longitudinal long wave speeds. As can be seen in Fig. 12, the crack
speed jumps over this gap when Q0 increases from the value 0.765616 to 0.765617.
We now turn to peculiarities of crack propagation in a viscoelastic lattice strip. In

Figs. 13(a), (b) dependences t(j) are depicted for two values of the creep time, �=1
and 2 (with zero relaxation time) and for a set of Q0. It can be seen how v decreases
with an increase of �. Contrary to the elastic case, the crack speeds can fall within
the forbidden interval (cR ; c1). Dependences v(Q0) are shown in Fig. 13(c) for �=0; 1
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and 2. It can be seen that there exists a jump discontinuity in the elastic case, while
the dependences are continuous for �= 1 and 2.
Note that curve 6 (Q0 = 0:935) in Fig. 13(b) (contrary to other dependences) has a

change in slope at t ≈ 42; j=95. Before this the crack speed v ≈ c1, while v ≈ 0:762
after this. Further analysis shows that this fact is related to the jump-like character of
the dependence v(�) in the case of a relatively strong initial elongation.
A comparison of the dependences t(j) built for a set of � is presented in Figs.

14(a), (b) for low initial elongations and in Figs. 14(c), (d) for high elongations. In
the latter, discontinuities can be seen in the dependences v(�). It was found that such
discontinuities exist for those values of Q0 which, in the elastic case, result in sonic–
supersonic crack propagation (i.e. if Q0¿ 0:7656). Dependences of the crack speed
versus � are shown for several Q0 in Fig. 15.
It was found that the critical value of �= �∗ corresponding to the jump in the crack

speed increases with Q0. Some values of �∗ are as follows:

�∗ = 0 (Q0 = 0:765616); �∗ = 0:141 (Q0 = 0:8);

�∗ = 0:355 (Q0 = 0:9); �∗ = 1:452 (Q0 = 0:935): (55)

This phenomenon is also manifested in the case of the standard viscoelastic material
with �¿�¿ 0. Crack speed dependences v(�) for �=1 and 2 (Q0 = 0:5 and 0:9) are
presented in Fig. 16.

7.3. Mode II crack propagation

The main numerical simulations for mode II fracture were performed for the strip
|m|6 800; |n|6 10. Here, the static state S1 is obtained by means of the slope bonds
lengthening and shortening which alternate with m; speci3cally, the right-slope bonds
are under compression, while the left-slope bonds are under extension. As in the mode
I problem, the horizontal bonds remain unstressed. Here the left-slope bond initial
elongation is denoted by Q0. So, the right-slope bond initial elongation is −Q0. For
|n|6 10 the elongation of the zero bond, in the mode II S2-state, appears to be Q0∗ =
2:950Q0. The range of Q0 is thus 1=2:950 ≈ 0:339¡Q0¡ 1.
First of all, we note a phenomenon which, along with the fact that |Q1|¿Q0 in the

S2-state, can result in irregular crack propagation. It is manifested in the process shown
in Fig. 17 as the dynamic transition from the S2-state to a new static state, S3, which
corresponds to the lattice strip with all the odd (compressed) bonds on the crack line
removed.
A surprising result can be seen: in the S3-state, the intact bond elongations appear

to be lower than in the S2-state. So, the odd bonds reduce the strength of the lattice.
Note, however, that this e=ect exists when the strip is deformed by a ‘rigid machine’,
that is when its boundaries are 3xed.
Cases (i) and (ii) considered for mode I exist in mode II as well; however, case

(iii) is here the most pronounced. What is more, in mode II the two branches of the
binary crack can change places. In some numerical situations, v1¡v2, while v1¿v2 in
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Fig. 17. Transition from S2-state to the S3-state for mode II: (a) |n|6 10, (b) |n|6 20. Numbers of the
intact bonds are shown.

others. In addition, the quasi-steady-state mode II crack can propagate with a periodic
exchange of the speeds of its branches.
The numerical simulation results are presented in Figs. 18–22. As above, the dotted

lines correspond to Rayleigh wave speed, cR, while the dash-dotted lines—to c1. The
limiting elongation and contraction are taken to be the same, |Qc|= 1.
Dependences t(j) for the elastic case are depicted in Figs. 18(a). Here, as in mode

I, the hollow circles correspond to the even bonds, while the solid circles correspond
to the odd bonds. At a very low elongation, Q0 =0:34 (Q0∗=1:002)—couple of curves
1—case (ii) is realized: v1 = v2 ≈ 0:397, the odd-bond branch propagates ahead, the
time delay is approximately 55:15. Recall that the size unit is the bond length, a, and
the speed unit is c = a

√
E=M .

With increase in Q0 the order of the branches is changed. The initial elongation
Q0 = 0:375 (Q0∗ ≈ 1:105)—curves 2—again results in case (ii): v1 = v2 ≈ 0:451, but
now the even-bond branch propagates ahead. For a somewhat higher initial elongation,
Q0 = 0:4 (Q0∗ ≈ 1:179)—curves 3—case (iii) is realized with v1 ≈ 0:495, v2 ≈ 0:791.
Then, if Q0 is varied in a relatively wide interval, from Q0 = 0:4167 (Q0∗ ≈ 1:230)—
curves 4—till Q0=0:95 (Q0∗ ≈ 2:80)—curves 5—the regular case (i) is realized, where
the crack velocity falls into the small vicinity of c1 slowly increasing from v ≈ 0:998,
curves 4, till v ≈ 1:15, curves 5. At a very high elongation Q0 = 0:99 (Q0∗ ≈ 2:98)—
curves 6—case (ii) is returned with v1 = v2 ≈ 1:51, the odd-bond branch propagates
ahead and the time delay is approximately 9:25.
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Fig. 18. Mode II binary crack propagation in the elastic lattice strip. The odd bonds are marked by hollow
circles and the even bonds are marked by solid circles. The dotted lines correspond to the long Rayleigh
wave speed, while the dash-dotted lines correspond to the long longitudinal wave speed: (a) The binary crack
fronts versus time. 1. Q0 = 0:34 (Q0∗ ≈ 1:002), 2. Q0 = 0:375 (Q0∗ ≈ 1:105), 3. Q0 = 0:4 (Q0∗ ≈ 1:180), 4.
Q0 = 0:4167 (Q0∗ ≈ 1:230), 5. Q0 = 0:95 (Q0∗ ≈ 2:80), 6. Q0 = 0:99 (Q0∗ ≈ 2:98). (b) Discontinuities in the
binary crack speeds.

Crack speed as a function of Q0 in the vicinity of Q0 = 0:4 is presented in
Fig. 18(b). Two jump discontinuities, one in v1 and another in v2 exist at Q0 = 0:391
and 0:408, respectively.
Dependences t(j) in the viscoelastic lattice strip are shown in Fig. 19 for an inter-

mediate elongation Q0 = 0:7 (Q0∗ ≈ 2:07) and for a set of values of the creep time, �
(�=0). It can be seen how crack velocities decrease with increase in � from a vicinity
of c1 to the Rayleigh wave speed and below it.
In the case of high initial elongation, Q0 = 0:9 (Q0∗ ≈ 2:65), the supersonic regime

of crack propagation is realized, Fig. 20. In this 3gure, the e=ect of velocity exchange
can be observed.
In the case of the elastic lattice, Fig. 20(a), case (i) is revealed. At � = 0:25,

Fig. 20(b), the quasi-steady-state crack propagation is characterized by a periodic ex-
change of the crack speeds between the branches. With further increase in �, Figs.
20(c) and (d), such exchange can be realized at an initial unsteady stage, while the
quasi-steady-state regime is related to case (iii).
A special regime of case (iii) with zero speed of one of the branches of the

binary crack can occur. This looks like the bridging by 3bers appearing in frac-
ture of 3ber-reinforced composites (Budiansky et al., 1986; Willis, 1993; Meda and
Steif, 1994a,b; Movchan and Willis, 1996, 1997a,b, 1998; Nemat-Nasser and Luqun,
2001). In connection with the binary crack phenomenon, the Barenblatt
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Fig. 19. Mode II binary crack propagation in the viscoelastic lattice strip for Q0 = 0:7 under di=erent values
of creep time � (� = 0): (a) �= 1, (b) �= 2, (c) �= 5, (d) �= 10. The odd bonds are marked by hollow
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wave speed, while the dash-dotted lines correspond to the long longitudinal wave speed.

cohesive zones in polymers are worthy of note (Knauss, 1973, 1993; Lauterwasser and
Kramer, 1979).
In Figs. 21(a) and (b), the even- and the odd-bond branches are, respectively, shown

for various values of Q0 and �= 1; �= 0. The calculations show that in this case the
crack does not propagate, v1 = v2 = 0, if Q06 0:351. The speeds v1 and v2 shown in
Fig. 21 are

Q0 0.357 0.417 0.5 0.6 0.7 0.8 0.9 0.95

v1 0 0 0.495 0.523 1.02 1.21 1.44 1.78

v2 0.141 0.382 0.515 0.878 1.01 1.12 1.38 1.68
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Fig. 20. Mode II binary crack propagation in the viscoelastic lattice strip for Q0 = 0:9 (Q0∗ = 2:65) under
di=erent values of creep time � (�= 0): (a) �= 0, (b) �= 0:25, (c) �= 0:5, (d) �= 1. The odd bonds are
marked by hollow circles and the even bonds are marked by solid circles. The dash-dotted lines correspond
to the long longitudinal wave speed.

Speeds v1 and v2 have discontinuities in the intervals 0:6¡Q0¡ 0:7 and 0:5¡Q0

¡ 0:6, respectively. It is of interest that v1¡v2 before the jump of v1 (Q0¡ 0:6),
while v1¿v2 after the jump (Q0¿ 0:6).
Speed jumps and the presence of di=erent crack branches can be realized with vari-

ation of the relaxation time as well. An example is represented in Fig. 22 where (a)
even and (b) odd branches are shown for Q0 = 0:5, � = 0 and various values of �.
It can be seen that v1 being lower than cR for �6 0:75 jumps to c1 in the interval
0:75¡�¡ 1, while v2 ≈ cR in the interval 0¡�¡ 0:5 and jumps to a value higher
than c1 in the interval 0:5¡�¡ 0:75.
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Fig. 21. Mode II binary crack propagation in the viscoelastic lattice strip for � = 1; � = 0: (a) Even-bond
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4. Q0 = 0:6 (Q0∗ = 1:770), 5. Q0 = 0:7 (Q0∗ = 2:06), 6. Q0 = 0:80 (Q0∗ = 2:36), 7. Q0 = 0:9 (Q0∗ = 2:65),
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dotted lines correspond to the long longitudinal wave speed.
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Fig. 22. Mode II binary crack propagation in the viscoelastic lattice strip for Q0 = 0:5, � = 1 and various
values of �: (a) Even-bond branch, (b) Odd-bond branch. 1. � = 0, 2. � = 0:25, 3. � = 0:5, 4. � = 0:75,
5.� = 1. Rayleigh wave speed, while the dash-dotted lines correspond to the long longitudinal wave speed.

8. Conclusion

Elastic and viscoelastic (standard material) quasi-static and dynamic crack growth in
the unbounded triangular lattice and in a lattice strip deformed by a ‘rigid machine’
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was examined. A crack was assumed to propagate along a given layer of lattice bonds,
while the crack speed was not prescribed. This formulation related to the weak-bond
fracture enabled possible the following ‘surprising phenomena’ to be revealed.
In static mode II, the strain of the crack front bond is lower than that of the next

one. A consecutive quasi-static bond rupture is thus forbidden.
In static mode II, if the alternate bonds on the crack continuation inclined di=erently

from the crack-front bond are removed, the stresses in the crack-front bond and in the
other intact bonds decrease. This suggests a possibility of partial fracture where the
crack breaks only the above-mentioned alternate bonds. Also, this suggests the existence
of a more general binary crack consisting of two branches growing along the same
layer with di=erent speeds. One of these branches disintegrates the above-mentioned
alternate bonds, while the other disintegrates the remaining bonds. In fact, this phe-
nomenon is revealed in the numerical simulations.
The manifestation of the binary crack was observed in the elastic and the viscoelastic

lattice strip not only for mode II, where it can exist in a wide range of initial strains,
but in the case of mode I as well; however, in the latter case, it can manifest itself
only in a narrow range of the initial stresses.
Mode I crack speeds in the elastic lattice strip cover the sub-Rayleigh and supersonic

ranges of the speeds as well as a close vicinity of c1. The range between cR and c1 is
almost completely forbidden. However, under the inAuence of viscosity, the forbidden
crack speed ranges narrow and can disappear. Mode II binary crack speeds can exist,
in addition, within the range (c2; c1). These facts are in agreement with the results
obtained in Slepyan (2001) for steady-state crack propagation.
The crack speeds were found to be discontinuous functions of the creep and relax-

ation times.
Along with this, an auxiliary problem related to a slow crack in the viscoelastic

lattice was considered (as in Slepyan (2000) for a square-cell lattice). In contrast to
mode I where the related auxiliary problem corresponded to the break of one bond, the
mode II related auxiliary problem was considered as that for a sudden rupture of two
neighboring bonds. In the creep-relaxation plane, the separation of the static amplitude
response domain from the dynamic overshoot domain was performed for both modes.
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