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Abstract

Discrete two-dimensional square- and triangular-cell lattices consisting of point particles con-
nected by bistable bonds are considered. The bonds follow a trimeric piecewise linear force-
elongation diagram. Initially, Hooke’s law is valid as the 9rst branch of the diagram; then, when
the elongation reaches the critical value, the tensile force drops to the other. The latter branch can
be parallel with the former (mathematically this case is simpler) or have a di:erent inclination.
For a prestressed lattice the dynamic transition is found analytically as a wave localized between
two neighboring lines of the lattice particles. The transition wave itself and dissipation waves
carrying energy away from the transition front are described. The conditions are determined
which allow the transition wave to exist. The transition wave speed as a function of the prestress
is found. It is also found that, for the case of the transition leading to an increased tangent
modulus of the bond, there exists nondivergent tail waves exponentially localized in a vicinity
of the transition line behind the transition front. The previously obtained solutions for crack
dynamics in lattices appear now as a partial case corresponding to the second branch having zero
resistance. At the same time, the lattice-with-a-moving-crack fundamental solutions are essentially
used here in obtaining those for the localized transition waves in the bistable-bond lattices.
Steady-state dynamic regimes in in9nite elastic and viscoelastic lattices are studied analytically,
while numerical simulations are used for the related transient regimes in the square-cell lattice.
The numerical simulations con9rm the existence of the single-line transition waves and reveal
multiple-line waves. The analytical results are compared to the ones obtained for a continuous
elastic model and for a related version of one-dimensional Frenkel–Kontorova model.
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1. Introduction

Two-dimensional lattices consisting of particles connected by massless bistable bonds
are considered, Fig. 1. The bonds are assumed to obey a piecewise linear two-branch
force-elongation relation, Fig. 2. At the transition point there exists a jump disconti-
nuity in the tensile force. In addition, the branches may di:er by the tangent mod-
ulus. Such a trimeric force-elongation diagram is characterized by 9ve parameters:
two moduli, two critical points (one is the transition point, the other is the limiting
strain for the second branch) and the above-mentioned jump. Two of them can be
taken as natural units, while remaining three parameters are important. This makes the
bistable-bond lattice model essentially more general and suitable for the modelling of
di:erent two-dimensional phase transition and fracture processes. Here, we consider a
localized transition wave.
If such a lattice is initially stressed, Fig. 2, it can behave as an active structure. As

a result of a disturbance, it can release initially stored energy for the dynamic tran-
sition. In particular, the transition can arise as a localized wave propagating between
two neighboring lines of the lattice particles. This wave results in the unloading of the
outer bonds which thus remain in the initial phase. So, we face a one-dimensional tran-
sition wave propagating in a two-dimensional lattice. Note, however, that this localized
transition wave is accompanied by the structure-associated sinusoidal waves excited by
the transition front. These waves can carry energy away from the transition line.
Such a line transition wave looks like a propagating crack bridged by 9bres as in

fracture of 9bre-reinforced composites (Budiansky et al., 1986; Willis, 1993; Meda
and Steif, 1994a,b; Movchan and Willis, 1996, 1997a,b, 1998; Huang et al., 1999;
Nemat-Nasser and Luqun, 2001; Biner, 2002).

The present formulation integrates those used (a) in works on one-dimensional phase
transition waves in bistable chains (Slepyan and Troyankina, 1984, 1988; Puglisi and
Truskinovsky, 2000; Slepyan, 2000, 2001b, 2002; Balk et al., 2001a,b; Charlotte and
Truskinovsky, 2002; Ngan and Truskinovsky, 2002; Kresse and Truskinovsky, 2003,
Kresse and Truskinovsky, 2004; Truskinovsky and Vainchtein, 2004; Cherkaev
et al., 2004; Slepyan et al., 2004) and (b) in fracture of two-dimensional lattices
(Slepyan, 1981, 2000, 2001a,c, 2002; Kulakhmetova et al., 1984; Fineberg
et al., 1991, 1992; Marder and Liu, 1993; Marder and Gross, 1995; Kessler and
Levine, 1998, 2001; Fineberg and Marder, 1999; Slepyan et al., 1999; Kessler, 2000;
Gerde and Marder, 2001; Pechenik et al., 2002; Slepyan and Ayzenberg-Stepanenko,
2002).
A lattice model of the Peierls type is used in the recent work by Movchan et al.

(2003). In this paper, a two-dimensional lattice is introduced as an interface embedded
into a homogeneous three-dimensional elastic space. The motion of a dislocation kink is
studied. The resulting integral equation is resolved numerically. Also, a 9nite-thickness
structural interface consisting of several lattice layers is considered for a homogeneous
two-dimensional elastic body.
It should be mentioned that active lattices of di:erent nature, as networks of identical

or almost identical interacting units ordered in space, are considered in many works
based on a synergetic approach, see Nekorkin and Velarde (2002). Theoretical methods
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Fig. 1. The lattices: (a) Square-cell lattice. It is intended to model anti-plane shear (mode III); however, a
hypothetic plane deformation with only vertical displacements—with the same formulation and results—can
also be assumed. The latter viewpoint is used when it is more convenient; for example, when displacements
and forces are shown in a plane 9gure. (b) Triangular-cell lattice under mode I extension. (c) Triangular-cell
lattice under mode II shear.
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Fig. 2. Force-elongation diagram: (1) the 9rst, initial branch; it corresponds to the initial phase characterized
by a unit nondimensional sti:ness, T =q. (2) The second branch, T =q−P∗ − (1− �)(q−q∗)=−P∗∗ + �q;
it comes in force when the elongation reaches the critical value, q = q∗. The vertical distance between the
branches is denoted by P. This phase transition is assumed irreversible. The dotted axes correspond to the
diagram plotted relatively the initial state where the elongation of nonhorizontal bonds is equal to q0. This
latter diagram is used when the problem is formulated with respect to the dynamic elongation additional to
the initial static state. Initial elongation of the horizontal bonds is at zero or negative and, in the analytical
formulation, they are assumed to be in the initial phase all the time not to su:er the phase transition.

of the qualitative theory of dynamical systems, and numerical simulations are used.
One-dimensional transition waves are shown.
In the present work, the Fourier transform and the Wiener–Hopf technique are used

allowing the detailed solution for a two-dimensional problem to be obtained including
that for the structure of the radiation (dissipation) during the moving transition. This
becomes possible for discrete square- and triangular-cell lattices with bistable bonds
characterized by piecewise linear (trimeric) stress–strain dependencies. Related transient
problems are considered numerically. The analytical results are compared to the ones
obtained for a continuous elastic model and for a related version of one-dimensional
discrete Frenkel–Kontorova model (Frenkel and Kontorova, 1938).
The goal of the present study is to determine the conditions allowing such a transition

wave to arise, and its speed as a function of the initial stress which de9nes the energy
release rate during the dynamic transition. In a special case, where the phases di:er only
by a jump in the tensile force, while the tangent modulus is the same for both branches,
the bonds are assumed elastic or viscoelastic (the model of a standard viscoelastic
material is used). In a general case, only elastic bistable lattices are considered.
Previously obtained solutions for crack dynamics in lattices appear now as a partial

case corresponding to the second branch having a zero resistance. At the same time, the
lattice-with-a-moving-crack fundamental solutions are essentially used here in obtaining
those for the localized transition waves in the bistable-bond lattices. This allows us to
avoid the need to consider and to solve the lattice dynamic equations; we thus avoid
the associated complicated conversions.



L.I. Slepyan, M.V. Ayzenberg-Stepanenko / J. Mech. Phys. Solids 52 (2004) 1447–1479 1451

Square- and triangular-cell lattices are examined. Note that the square-cell lattice is
intended to model anti-plane shear; however, a hypothetical plane deformation with
only vertical displacements—with the same formulation and results—can also be as-
sumed. We use the latter viewpoint when it is more convenient; for example, when
displacements and forces are to be shown in a plane 9gure.

2. Formulation

Consider a lattice, Fig. 1, consisting of point particles each of mass M connected
by massless bistable bonds which obey the force-elongation relation

T = q (t ¡ t∗); T = q − P∗ − (1 − �)(q − q∗) = �q − P∗∗ (t ¿ t∗);

P∗∗ = P∗ − (1 − �)q∗; q¡q∗ (t ¡ t∗); q= q∗ (t = t∗) (1)

shown in Fig. 2. Here T and q are the nondimensional tensile force and elongation, t∗
is the moment of time, t, when the elongation 9rst reaches the critical value, q∗. At
this moment the transition occurs from the 9rst branch of the diagram in Fig. 2 to the
other, lower branch whose nondimensional tangent modulus is equal to �; P∗ is the
vertical distance between the branches at q= q∗, while P∗∗ is that at q= 0. Here and
below we use the nondimensional values as

u′
m =

um
a
; v′ =

v
c
; t′ =

ct
a
; x′ =

x
a
; y′ =

y
a
;

q′
m =

qm
a

= u′
m − u′

m−1; T ′ =
T
�a

; P′
∗ =

P∗
�a

(2)

(but with the superscript dropped) for the displacements, the transition wave speed,
time, rectangular coordinates, elongations, the tensile force and the jump discontinuity
in the force-elongation diagram, respectively; c=a

√
�=M; a and � are the characteristic

speed, the bond length and the 9rst branch tangent modulus, respectively. The x; y
coordinate origin is taken at m = n = 0, where n is the particle line number. So, the
particle coordinates at n= 0 (y= 0) are x= 0;±1; : : : : For the square-cell lattice this
is valid for any n, while for the triangular-cell lattice those are de9ned as x= n=2+m.
Recall that for t ¡ t∗ the bond is in the initial phase characterized by a unit

nondimensional sti:ness. The phase transition occurs at t = t∗ when the elongation
9rst reaches the critical value, q∗. At this moment a jump in the tensile force arises,
[T ] = T (t∗ + 0) − T (t∗ − 0) = −P∗6 0, and the bond comes into the other phase
where the tangent modulus dT=dq= �. Note that the phase transition moment, t= t∗, is
di:erent for di:erent bonds. A one-dimensional elastic chain with such an irreversible
behavior of its bonds is considered in Slepyan et al. (2004). A partial case of two
linear branches for the chain, T = q and T = �q (�¡ 1) was examined in Slepyan and
Troyankina (1984), while the case P∗ ¡ 0; �¿ 1; P∗∗ ¿ 0, also for the chain, was stud-
ied in Slepyan and Troyankina (1988). A reversible two-phase chain was considered
by Balk et al. (2001a,b).
Initially, the lattice is assumed to be uniformly stressed in such a way that the

elongation of the y-directed or inclined bonds (as in a square-cell or in a triangular-cell
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lattice, respectively), q0, is below the critical value, q∗. The x-directed bonds are not
stressed (this corresponds to mode I unidirectional strain of the lattice and to modes II
and III), or these bonds are slightly compressed (as in the case of mode I unidirectional
stress of the lattice). Note that in the case of mode II for the triangular-cell lattice,
lengthening and shortening of the inclined bonds alternate. In this case, the critical
value is assumed to be ±q∗ for these deformations, respectively.

For the analytical analysis it is reasonable to assume that the phase transition wave
arising from a small disturbance is localized between the neighboring lines of parti-
cles (denoted as n = 0 and −1). Indeed, the negative jump in the tensile force acts
to unload the y-directed or inclined bonds outside this damaged band, while the ini-
tially unstressed x-directed bonds have a great safety factor. (The results of numerical
simulations discussed below show when the localized transition wave can exist.) It
is also assumed that the wave propagates with a constant speed v. This means that
the time-interval between the transformation of the neighboring bonds is 1=v for the
square-cell lattice and 1=(2v) for the triangular-cell lattice (see Fig. 1). Under these
conditions, the steady-state regime is considered with the transformed-bond region at
�= x − vt ¡ 0.
Thus, we face a steady-state problem for a lattice whose bonds are in the initial

phase except those placed between lines n=0 and −1 at �¡ 0 where the bonds are in
the second phase. The solution is required that satis9es the dynamic equations for such
a ‘damaged’ lattice and the following inhomogeneous conditions at in9nity: the strain
9eld coincides with a given initial one at y=±∞ and �=+∞. The solution presents
the elongation of a bond at the moment of the above-mentioned transformation, �=0,
as a function of the wave speed, v, and the initial elongation. The equality

q(�) = q∗ (�= 0) (3)

serves for the determination of the speed as a function of the initial elongation. In
addition, the solution must satisfy the admissibility condition

q¡q∗ (�¿ 0): (4)

Otherwise, the transition occurs earlier, that is, the transition wave speed is really
greater than in the solution, in spite of the fact that the condition (3) is satis9ed (for
fracture this was pointed out by Marder and Gross, 1995). In addition, for a single-line
transition wave the condition in (4) must be satis9ed outside the transition layer. This
point will be discussed in Section 4.7.
For our goal it is convenient to reformulate this problem as follows. Consider a

uniform lattice all the bonds of which are in the initial phase for any q. Introduce
self-equilibrated pairs of external forces applied to the particles connected by the
transition-line bonds. The forces are directed along the corresponding bond as shown
in Fig. 3. Referring to (1) choose the forces as

P(�) = P∗ + (1 − �)[q(�) − q∗] (�¡ 0); P(�) = 0 (�¿ 0): (5)

The intact bonds together with these external forces act on the transition-line particles,
n = 0 and n = −1, in the same way as if the bonds are in the second phase. Hence,
such a reformulation does not inOuence the lattice dynamic behavior.
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Fig. 3. Phase transition in a band modelled by self-equilibrated external forces. All the bonds of the lattice
are assumed to be in the initial phase, but those between the particle lines n=0 and −1 at �¡ 0 (t ¿m=v)
are loaded by the forces, P=P∗ +(1− �)(q− q∗), as shown in this 9gure. For the lattice particle dynamics
this is the same as if those bonds are in the other phase. (a) The square-cell lattice (see the caption for
Fig. 1). (b) Mode I triangular-cell lattice. (c) Mode II triangular-cell lattice.

We now consider the problem for P∗ ¿ 0; �¿ 0 (P∗ ¡q∗−q0 if �=0). The limiting
partial case

P∗ = q∗; q0 = �= 0 (6)
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corresponds to a free-face crack considered in Slepyan (2001a, c, 2002). Another re-
markable case, �=1, will be considered separately and also as the limiting case (� → 1)
of the solution corresponding to � �= 1.

3. Governing equation for elastic lattices

To proceed we introduce a steady-state fundamental solution, Q(�), as the elongation
of the bonds between lines n= 0 and −1 caused by the external self-equilibrated pair
of impulsive forces P= �(�), Fig. 4. In the case of mode II, these forces act to stretch
the right-inclined bonds and to compress the left-inclined bonds. For other modes
these forces act on each bond equally. In these terms, the additional elongation of a
transition-line bond caused by a general distribution of external forces, P(�), is

�(�) = q(�) − q0 = Q(�) ∗ P(�); (7)

Fig. 4. External forces corresponding to the fundamental solution for an intact lattice: (a) Square-cell lattice;
(b) Triangular-cell lattice.
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where ∗ is the convolution symbol. In terms of the Fourier transform, this equality
becomes

� F(k) = QF(k)PF(k): (8)

We now denote

� F = �+ + �−; �± =
∫ ∞

−∞
�(�)H (±�)eik� d�; (9)

where H is the Heaviside unit step function. The same subscript, + (−), will be used
for the right-side (left-side) Fourier transform of any function. Referring to Eq. (5)

PF = P− = P∗(0 + ik)−1 + (1 − �)[�− − �∗(0 + ik)−1]; (10)

where �∗ = q∗ − q0. Note that the symbol 0 + ik means lim(s + ik); s → +0, that
reOects here the generalized Fourier transform. Eq. (8) can now be represented in the
form

�+ + [1 − (1 − �)QF ]�− = [P∗ − (1 − �)�∗]
QF

0 + ik
: (11)

Fortunately, to 9nd the function QF(k) appearing in this equation we have no need
to consider the corresponding dynamic problem for the lattices. Since it is de9ned
for the intact lattice, that is, it is independent of the parameters P∗; q0; �, it can be
expressed in terms of the known lattice-with-a-crack Green function denoted by L(k) in
Slepyan (2002). With this in mind we rearrange relation (7) to obtain the corresponding
equation for the lattice with a crack at �¡ 0. Represent

PF(k) = q−(k) + pF(k); (12)

where p(�) is an arbitrary function, and put q0 = 0. The 9rst term in the right-hand
side of Eq. (12) compensates the tensile forces in the considered bonds at �¡ 0 and
hence, as far as the external forces are de9ned by Eq. (12), this corresponds to a
lattice with a crack at �¡ 0 loaded at n= 0 and −1 by the self-equilibrated pairs of
forces, p(�).
In the considered case �(�) = q(�) and Eq. (8) leads to

L(k)q+(k) + q−(k) = [L(k) − 1]pF (13)

with

L(k) = [1 − QF ]−1: (14)

In terms of the elongations, Eq. (13) coincides with the governing equations for crack
dynamics [see Eqs. (11.16) and (12.4) in Slepyan (2002), where the elongation is
denoted by capital Q, u = Q=2 and the external forces are denoted by q]. Thus, the
expressions for L(k) presented in this book [Eqs. (11.17) and (12.47)] can be used to
9nd QF from (14). It follows that

QF = 1 − 1
L(k)

; (15)
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where for mode III unbounded square-cell lattice

L(k) =

√
r(k)
h(k)

(16)

with

h(k) = 2(1 − cos k) + Y;

r(k) = h(k) + 4 (17)

and

Y = (0 + ikv)2; 0 + ikv= lim
s→+0

(s+ ikv): (18)

Note that the latter limit reOects the causality principle for steady-state solutions (see
Slepyan, 2002). The function L(k) for a square-cell lattice strip can be found in Slepyan
et al. (1999) and Slepyan (2002).

For a triangular-cell lattice

L(k) =
r"(k)
h"(k)

; (19)

where

h" =
F(n2)

√
n21 − 1 − F(n1)

√
n22 − 1

n2 − n1
; r" = 3

√
n21 − 1

√
n22 − 1;

F(n1;2) = 3(cos k=2 − n1;2)2 + 6 sin2 k=2(1 ± cos k=2)(1 ∓ n1;2)

+Y [(1 ± cos k=2)(1 ∓ n1;2) + 1 − n1;2 cos k=2]: (20)

In the expression for F(n1;2), upper signs correspond to mode I, while lower signs
correspond to mode II. Functions n1;2 are

n1;2 =
(
1 + 2 sin2 k=2 +

2
3
Y

)
cos k=2

∓
[
1
9
Y 2 − 4 sin2

k
2

(
sin2

k
2
+

1
3
Y

)2
]1=2

: (21)

The rule of the determination of signs of the radicals in the above relations [the
argument of a radical is continuous in a pre-limiting case, s¿ 0, see Eq. (18)], as
well as the asymptotes for k → 0 and k ± ∞, can be obtained from the corresponding
sections of the book by Slepyan (2002). In particular,

h(k)
r(k)

→ h"(k)
r"(k)

→ 1 (k → ±∞): (22)

Eq. (11) can now be rewritten as

L(k)�+ + �− =
q0[L(k) − 1]

0 + ik
(23)
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with

q0 =
P∗∗
1 − �

; P∗∗ = P∗ − (1 − �)�∗ (24)

and

L(k) =
L(k)

�L(k) + 1 − �
: (25)

Note that the initial strain does not appear in the governing equation (23). The
problem may thus be considered in terms of the additional elongations vanishing at
x → +∞ and y → ±∞, as if the force-elongation diagram has its origin at q=q0; T=q0
as shown in Fig. 2.

4. Solution for � �= 1

4.1. Derivation of main relations

Eq. (23) can be solved using the Wiener–Hopf technique. In this connection 9rst
note some features of the function L(k) in Eq. (25). Under the causality principle this
function should be considered as the limit (s → +0) of L(s+ikv; k) (see Slepyan, 2002);
further we denote this function L(k). It follows from the Theorem of the fundamental
solution (Slepyan, 2001c, 2002) that if s¿ 0, as k runs over the real axis from −∞
to ∞, the function L(k) forms a closed contour in the complex plane, RL(k)+ iIL(k),
leaving the negative half-axis, RL(k)6 0, in the outer domain. This evidences that

Ind L(k) =
1
2#

[Arg L(∞) − Arg L(−∞)] = 0: (26)

It follows that the denominator in Eq. (25), �L(k)+ 1− �, possesses the same features
at least for 06 �6 1. Hence, in this range of �

IndL(k) = 0: (27)

In fact, this equality is valid for any value of �¿ 0. Indeed, we have

IndL(k) = Ind L(k) − Ind[1 − �+ �L(k)] (28)

with Ind L(k) = 0. In its turn,

L(k) = 1 − �ULF(s′ + ikv; k); (29)

where U (t; �) is the fundamental solution for the lattice half-plane [see Eq. (12.13) in
the book by Slepyan, 2002]. The theorem on the fundamental solution presented there
states that If s′ ¿ 0, the double, Laplace (on t) and Fourier (on �) transform of the
solution, ULF, cannot be positive for any k. As a consequence

1 − �+ �L(k) = 1 − ��ULF � 0 (s′ ¿ 0): (30)

At the same time,

1 − �+ �L(k) = 1 (k = ±∞): (31)
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It follows that when k runs from −∞ to ∞ this function forms a closed contour in
the complex plane, while the origin, k=0, is outside this contour. Thus, for any �¿ 0

Ind[1 − �+ �L(k)] = IndL(k) = 0: (32)

Further, L(±∞) = 1 and it can be seen in Eq. (25) that this equality is still valid
for L(k). The function L(k) can thus be factorized using the Cauchy-type integral,
namely

L(k) =L+L−;

L± = exp
[
± 1
2#i

∫ ∞

−∞

lnL(%)
% − k

d%
]
; (33)

where Ik ¿ 0 for L+ and vice versa. If s¿ 0 the function L+(k) [L−(k)] has no
zeros and singular points in the upper (lower) half-plane with the real axis. In particular,
it follows that

L+ → 1 (k → i∞); L− → 1 (k → −i∞): (34)

Noting that L(0) = 1=� [L(0) = ∞] we now can rearrange Eq. (23) in the form

L+(k)�+ +
�−

L−(k)
=

q0[L+(k) − 1=L−(k)]
0 + ik

= C+(k) + C−(k);

C+(k) =
q0[L+(k) −L+(0)]

0 + ik
=

q0[L+(0) −L+(k)]
0 − ik

;

C−(k) =
q0[L+(0) − 1=L−(k)]

0 + ik
;

L±(0) =
1√
�
R±1; R= exp

[
1
#

∫ ∞

0

ArgL(%)
%

d%
]
: (35)

The functions C+(k) and C−(k) have no singular points in the upper and lower
half-planes, respectively [point k =0 is regular for C+; this allows us to change 0+ ik
to −(0− ik)]. Now, following the Wiener–Hopf technique and taking into account the
condition � = 0 at � = +∞, we can simply separate the corresponding functions in
Eq. (35) and 9nd the solution as

�+(k) =
C+(k)
L+(k)

; �−(k) = C−(k)L−(k): (36)

For �= 0 Eq. (36) yields

�(0) = lim
p→∞p�+(ip) = lim

p→∞p�−(−ip) = q0[L+(0) − 1]

= q0
(

1√
�
R− 1

)
: (37)
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In the considered wave, if it exists, �(0) = �∗. This results in the following equation:

R=
√
�
(
�∗
q0

+ 1
)
=

√
�P∗

P∗ − (1 − �)�∗
: (38)

This equation de9nes the transition wave speed [R is de9ned in Eq. (35) as a function
of v]. If no wave speed satis9es this equation the wave does not exist. Solution (36)
can thus be rewritten as

�+(k) =
[

P∗
1 − �

(
1

L+(k)
− 1

)
+ �∗

]
1

0 − ik
;

�−(k) =
[

P∗
1 − �

(L−(k) − 1) + �∗

]
1

0 + ik
: (39)

4.2. The elongation at in=nity

The limits of �(�) for � → ±∞ follow from Eq. (36) [also see Eqs. (23) and (35)]
as

�(+∞) = lim
p→0

p�+(ip) = 0;

�(−∞) = lim
p→0

p�−(−ip) =
P∗∗
�

(40)

as they should be. They are the static elongation corresponding to the 9rst phase at
� → +∞ and to the second phase at � → −∞.

4.3. The energy release and the transition wave speed

The phase transformation path on the ‘macrolevel’, that is, in the long-wave approx-
imation where no high-frequency dissipative waves are detected, corresponds to the
horizontal segment presented in Fig. 5. Triangle CDE represents the released energy a
part of which is spent in overcoming the energy barrier (triangle ABC). The resulting
energy released on the macrolevel per bond, is thus represented by the di:erence of the
areas of the latter and former triangles. As can be seen in Fig. 5 the nondimensional
energy release per bond is

G =
1
2�

(P∗ − �∗)2 − 1
2
�2∗: (41)

The energy dissipation per unit time is vG for the square-cell lattice and 2vG for
the triangular-cell lattice. In terms of the total energy release rate,

�∗ =
P∗√

�
√
1 + 2G0 + 1

(
G0 =

G
�2∗

)
(42)

and Eq. (38) can be rewritten in the form

R=
1 +

√
�
√
1 + 2G0

√
�+

√
1 + 2G0

: (43)
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Fig. 5. Phase transition path on the macrolevel and the energy release. The phase transition path is shown
by arrow AD on the �-axis. Triangle CDE represents the released energy a part of which is spent for
overcoming the energy barrier (triangle ABC), while the rest part is radiated away from the transform band
with sinusoidal waves. The resulting energy released on the macrolevel per bond, is represented by the
di:erence of the areas of the latter and former triangles.

This equation de9nes the speed as a function of G0. It can be observed that

R= 1 (G0 = 0); R=
√
� (G0 = ∞);

dR
dG0 ¡ 0 (�¡ 1);

dR
dG0 ¿ 0 (�¿ 1): (44)

The inverse relation is

G0 =
1
2

[(
1 −R√

�
R− √

�

)2

− 1

]
: (45)

In accordance with the obtained solution, this energy is radiated away from the
transition front with sinusoidal dissipative waves. The nonzero real singular points of
�±(k) are their wavenumbers. They can be speci9ed as follows. Square-root-type real
singular points of L+(k) [in Eq. (39) for �+(k)] are zeros of h(k) and g(k) of the
type k=k�− i0. These points represent waves propagating ahead of the transition front.
Real singular points of L−(k) [in Eq. (39) for �−(k)] are zeros of h(k) and g(k) of
the type k = k) + i0. The corresponding waves propagate behind the front.
For v¿ 0 there exist a 9nite number of such points; the number increases as the

speed decreases. Note that the obtained solution directly de9nes these waves only in
the considered layer of the bonds. In fact, the sinusoidal waves carry energy away from
the transition layer to the bulk of the lattice, and their amplitudes decrease with the
distance from the transition front due to geometrical divergence. (In this connection,
see Sections 11.5.5 and 11.5.6 in the book by Slepyan, 2002.)
In addition, if �¿ 1, there exist simple or multiple poles of L−(k) as zeros of

�L(k) + 1 − � of the type k = k) + i0. The corresponding waves do not diverge. We
now study such a remarkable tail wave in more detail.
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4.4. Localized sinusoidal waves in an in=nite lattice

Consider an in9nite square-cell lattice whose bonds between lines n=0 and n=−1
are in the second phase, while others are in the 9rst phase. If this lattice is at rest, its
equilibrium state corresponds to that far behind the transition front (see Section 4.2).
In terms of additional displacements, the dynamic equations are

Pum;n(t) = um−1; n(t) + um+1; n(t)

+ um;n−1(t) + um;n+1(t) − 4um;n(t) (n¿ 1; n6− 2);

Pum;0(t) = um−1;0(t) + um+1;0(t) + um;1(t) − 3um;0 + �[um;−1(t) − um;0(t)];

Pum;−1(t) = um−1;−1(t) + um+1;−1(t) + um;−2(t) − 3um;−1

+ �[um;0(t) − um;−1(t)]: (46)

We seek the solution in the form

um;n(t) = *n exp[ik(m − vt)] (n¿ 0);

um;n(t) = −*1−n exp[ik(m − vt)] (n6− 1) (47)

with |*|¡ 1, that is, a solution vanishing as n → ±∞ and having symmetry related to
the transition wave problem. Substituting this in the 9rst of Eqs. (46) we obtain two
possible solutions characterized by

*= *1;2 =
1
2
[h(k) + 2] ±

√
1
4
[h(k) + 2]2 − 1

(
*2 =

1
*1

)
: (48)

We now substitute any of them in the second equation (or, equivalently, in the third
one). It follows that

*
(

−1
*

− 2�+ 1
)
= 0 ⇒ *= − 1

2� − 1
: (49)

So, solution (47) with |*|¡ 1 can exist only if �¿ 1; it corresponds to * = *1. For
�¡ 1 an exponentially growing wave exists, |*|¿ 1, while for �=1 the wave represents
constant amplitude antiphase oscillations.
Note that, in the considered phase transition problem, waves with |*|¿ 1 cannot be

excited at all, the uniform wave gradual formation occurs due to the radiation of a
divergent wave, and only the exponentially decreasing waves, |*|¡ 1, having a 9nite
energy density per unit length can exist behind the transition front. In the �-uniform
lattice considered in this section, such a wave carries energy along the higher-modulus
layer and represents thickness (antiphase) oscillations whose amplitude exponentially
decreases as |n| increases. Note that this is a genuine lattice solution having no analogue
in the corresponding continuous model.
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From Eq. (48) it now follows that

h(k) + 2 = −+ = −
(
2� − 1 +

1
2� − 1

)
: (50)

or

!= kv= ±√
+ + 4 − 2 cos k: (51)

For given �¿ 1 and v¿ 0, this dispersion relation has a number of roots

k = ±k2)+1 + i0 (for )¿ 0); k = ±k2) − i0 (for )¿ 0);

)= 0; 1; : : : ; N; (52)

where N = 0 if the speed is high enough; N increases as v decreases. Note that the
waves (47) with k = k� and k =−k� form a real sinusoidal wave. Wavenumbers k2)−1

belong to waves whose phase velocity is greater than the group velocity, while an
inverse relation is valid for k2)-waves.

For �¿ 1 the dispersion relation in Eq. (50) completely coincides with that corre-
sponding to a pole of L(k), that is, it is equivalent to the equation �L(k) + 1− �=0.
Thus, for �¿ 1 a localized tail wave or (living aside the admissibility question in the
sense of Section 4.7) several such waves can propagate behind the transition front with
a constant (�-independent) amplitude. The wave amplitude and the wavenumber are
de9ned by the solution (39) for �−(k), while its structure is de9ned in Eqs. (47)–(50)
with * = *1. In this wave, the energy Oux relatively the transition front is directed
along the transition line to �= −∞.

4.4.1. Resonant waves
Two or three roots from Eq. (52) can unite. The positive double root is that of

(k − k2)−1 − i0)(k − k2) + i0) (k2) = k2)−1); (53)

while the positive triple root corresponds to

(k − k2)−1 − i0)(k − k2)+1 − i0)(k − k2) + i0) (k2)−1 = k2)+1 = k2)): (54)

(The same, but negative roots also exist.) These wavenumbers correspond to resonant
waves whose group and phase velocities coincide. In the considered phase transition
problem where �¿ 1 at �¡ 0, but not ahead of the transition front, only the ‘odd
wavenumbers’ are important (others do not belong to L−(k)). So, in this case, the
resonant wave corresponds only to the triple root that gives rise to the second-order
pole of L−(k).
For the triple root three equations are valid: Eq. (50) and two successive derivatives

of it

kv2 = sin k;

v2 = cos k: (55)
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The corresponding values of the wave number, the phase velocity (that coincides with
the transition front velocity) and � follows from these equations as

sin k =
k√

k2 + 1
⇒ k ≈ ±

[
(2� + 1=2)# − 1

(2� + 1=2)#

]
; � = 1; 2; : : : ;

v= (k2 + 1)−1=4;

�= 1
2 +

1
4 (+ +

√
+2 − 4); + =

k2 + 2√
k2 + 1

: (56)

Thus, there exists a set of special values of � where, in the phase transition problem,
the localized resonant waves are possible. For each such value only one real resonant
wave is possible and it corresponds to only one value of v. The resonant parameters
begin from

k ≈ ±7:725; v ≈ 0:358; � ≈ 2:322: (57)

Then, when the resonant wavenumbers increase, the resonant speeds decrease and the
corresponding values of � increase. In the considered steady-state regime, the resonant
wave amplitude is in9nite. So, it corresponds to G0 =∞. If � and v are not equal but
close to their resonant values, the solution exists, but G0 is large.

4.5. The limit at �= 1

Eq. (38) has a limiting expression for � → 1. In this case

ArgL= arctan
(1 − �)IL

�|L|2 + (1 − �)RL
∼ (1 − �)

IL
|L|2 = −(1 − �)I

(
1
L

)
;

R ∼ 1 − 1 − �
#

∫ ∞

0
I

[
1

L(k)

]
dk
k

(58)

and in the limit Eq. (38) becomes

1
2

− 1
#

∫ ∞

0
I

[
1

L(k)

]
dk
k

=
�∗
P∗

=
1

1 +
√
1 + 2G0

(59)

with

G0 =
G
�2∗

; G = 1
2 P

2
∗ − P∗�∗: (60)

Below this result will be obtained directly for �= 1.

4.6. Discussion

The dependencies of 1=G0 on the wave speed, v, for some values of � [see
Eqs. (45) and (35)] are plotted in Fig. 6. The lower boundary of G0 as a function of
� is presented in Fig. 7.
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Fig. 6. The normalized energy release rate versus the transition wave speed for mode III of the square-cell
lattice: (a) �6 1; (b) �¿ 1.
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Fig. 7. (a) The lower boundary of the energy release rate, G0, and the upper boundary of the critical
elongation, �∗=P∗. (b) The right (admissible) branch of the speed as a function of �∗=P∗. The lower
boundary of the admissible speed is marked by bullets. Curves 1–8 correspond to �=0:1, 0.3, 0.5, 0.7, 1.0,
1.3, 1.5 and 2.0, respectively.

It is seen that G0 reaches its minimum roughly at v=0:5. After this, G0 monotonically
grows as v grows. This branch corresponds to admissible speeds (see Section 4.7), but
the left branch does not. The value of the lower boundary, v ≈ 0:5, is de9ned by the
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dynamic ampli9cation factor [see Slepyan, 2000, 2002, where it is shown that there is a
lower boundary of the transition speed in an elastic system]. After the transition occurs
in a front bond, under a small speed, the bond elongation approaches the 9nal value
oscillating relatively it. Let . be the time required for the elongation to reach maximum.
Roughly, it is equal to a half-period of the oscillations. If v¡ 1=. is assumed, the next
bond transition occurs under the elongation lower than the maximal one. This means
that the elongation ahead the transition front exceeds the critical value, and hence this
speed is not admissible. Otherwise, if v¿ 1=., the speed is admissible since q¡q∗ at
�¿ 0. The lower boundary, v ≈ 0:5, corresponds to the oscillation frequency of a unit
mass supported by two–three unit-sti:ness bonds. Among these bonds the second-phase,
higher-sti:ness bond plays a role, and it is seen that the lower speed boundary, v=1=.,
increases as � increases, as it should be since an increase in the sti:ness leads to a
decrease in ..
In the low-speed region, v¡ 0:3, more and more sinusoidal waves arise as the speed

decreases. The intensity of each wave after its origin appears extremely sensitive to
the speed. This causes irregularities in the dependencies shown in Fig. 6. As v → 0,
the number of such waves tends to in9nity and the amplitude of the oscillations tends
to zero.

4.7. Criterion of admissibility

In addition to the condition (3) [or, equivalently, �(0) = �∗], the analytical solution
must be admissible in the sense that the bond elongation in the initial phase must be
below the critical value, i.e. �¡�∗ at �¿ 0. This condition also concerns all the bonds
outside the transition line. Otherwise, the considered single-line steady-state transition
wave does not exist. This condition is similar to that in fracture of lattices (Marder
and Gross, 1995). In this connection, consider a necessary condition as

d�(�)
d�

6 0 (�= 0): (61)

In terms of the Fourier transform, this derivative can be expressed as

d�(�)
d�

= lim
k→i∞

(−ik)[(−ik)�+(k) − �(0)] = lim
k→−i∞

(−ik)[ik�−(k) − �(0)]: (62)

Not that the derivative is continuous. To 9nd this limit consider the Cauchy type
integral in (33) where

R lnL(−k) = R lnL(k);

I lnL(−k) = −I lnL(k);

R lnL(k) = O
(

1
k2

)
(k → ∞);

I lnL(k) = 0 (k ¿
√
8=v): (63)
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(1) � = 0:5, (2) � = 1:5. The minimal values of G0 are marked by bullets.

These properties are enough for the estimation as∫ ∞

−∞

lnL(%)
% − k

dk = − 2
k

∫ ∞

0
ln |L(%)| d%+ o

(
1
k

)
(k → ±i∞): (64)

Thus

L±(k) ∼ 1 ± i
#k

∫ ∞

0
ln |L(%)| d% (k → ±i∞): (65)

Referring to Eqs. (35), (39) and (62) we now 9nd the following expression:

d�(0)
d�

=
R

#
√
�

(
P∗

� − 1
+ �∗

) ∫ ∞

0
ln |L(%)| d%: (66)

This result can be directly used if � �= 1, while the expression for �=1 can be obtained
as the limit, � → 1, or directly from Eq. (72); it is

d�(0)
d�

= −P∗
#

∫ ∞

0

[
1 − R

1
L(k)

]
dk; (67)

where L(k) is de9ned in Eqs. (16) and (19). Note that for v¿ 0 the considered integrals
converge. The calculation results presented in Fig. 8 evidence that criterion (61) is
satis9ed for the stable branch of the speed–energy release rate dependence (where
dG0=dv¿ 0) and is not satis9ed otherwise.
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5. Parallel branches: � = 1

5.1. Elastic lattice

Such a bistable model is remarkable for the fact that the transition from the one
branch to the other does not change the left-hand side of the equation. It results only
in self-equilibrated pairs of external forces applied to the particles connected by the
corresponding bond, Fig. 3. These forces are independent of the elongation now. Thus,
an intact uniform lattice can be considered, and only the right-hand side of the dynamic
equation (which is independent of the lattice displacements) reOects the transition. This
simpli9es greatly the problem considered. Namely, it is no longer a mixed boundary
value problem. Besides, in this case the superposition is valid allowing multiple tran-
sition bands to be considered.
In this case, Eq. (11) de9nes the elongation in the explicit form

� F(k) =
P∗QF

0 + ik
=

P∗
0 + ik

[
1 − 1

L(k)

]
: (68)

Note that in terms of the dimensional values

� F(k) =
P∗

�(0 + ik)

[
1 − 1

L(k)

]
: (69)

Further, since

RL(−k) = RL(k); IL(−k) = −IL(k); 1=L(0) = 0; L(±∞) = 1; (70)

the inverse transform

�(�) =
1
2#

∫ ∞

−∞
� F(k)e−ik� dk (71)

leads to the following result:

�(�) =
(
1
2 − I1 − I2

)
P∗

I1 =
1
#

∫ ∞

0
I

[
1

L(k)

]
cos(k�)

k
dk → 0 (� → ∞);

I2 =
1
#

∫ ∞

0

[
1 − R

1
L(k)

]
sin(k�)

k
dk =

{
0 (�= 0);

± 1
2 (�= ±∞);

(72)

where the 9rst term, 1
2 , in the expression for �(�) is a half-residue at k =0. It follows

that

�(0) = P∗

{
1
2

− 1
#

∫ ∞

0
I

[
1

L(k)

]
dk
k

}
; �(∞) = 0; �(−∞) = P∗: (73)

We thus come to the above limiting results, Eqs. (37), (58) and (40) [recall that
�(0) = �∗ and if �= 1 then P∗∗ = P∗].
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Fig. 9. The standard viscoelastic material unit.

5.2. Viscoelastic lattice

For this special type of the force-elongation diagram, if the branches di:er only
by the ‘elastic part’ of the tensile force (as discussed below), the elastic–viscoelastic
correspondence principle is valid.
In an initial range of the extension, the bonds are assumed now to satisfy the standard

material viscoelastic relation:

T + 0
dT
dt

= �
(
q+ 1

dq
dt

)
; (74)

where 1 and 0 are the creep and relaxation times, respectively. For convenience we
here preserve the dimension values. This relation corresponds to a unit presented in
Fig. 9, where the left spring sti:ness is 21, the right spring sti:ness is 22 and the
viscous resistance of the element successively connected with the right spring is C. In
these terms

� = 21; 1=
C
21

+
C
22

; 0 =
C
22

: (75)

Note that relation (74) can also be represented in the form

T =
�
0
e−t=0

∫ t

−∞

[
q(.) + 1

dq(.)
d.

]
e.=0 d.: (76)

When the elongation reaches the critical value, q∗, the left spring is assumed to slip
by a 9xed value, such that its elongation becomes q− q∗∗, where q remains to be the
elongation of the unit and

21q∗∗ = �q∗∗ = P∗ = const: (77)

It is assumed that

P∗6 �q∗; (78)
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that is, the tensile force in the left spring remains nonnegative. Thus, after this
transformation the stress–strain relation (76) becomes

T =
�
0
e−t=0

∫ t

−∞

[
q(.) + 1

dq(.)
d.

]
e.=0 d. − P∗: (79)

We assume that the initial state is well established and hence viscosity inOuences
only the additional elongation caused by the transform. In accordance with the elastic–
viscoelastic principle (or directly from Eq. (74)], the viscoelastic solution can be ob-
tained from the elastic one (69) if � is changed to the complex modulus �E with

E =
1 + ikV1
1 + ikV0

; V1 =
v1
a
; V0 =

v0
a
: (80)

Accordingly, the function Y (18) must be replaced by

Y =
(0 + ikv)2

E
: (81)

Formula (73) for the nondimensional elongation, �(0), additional to the initial one
becomes

�(0) = P∗

{
0
21

− 1
#

∫ ∞

0
I

[
1

EL(k)

]
dk
k

}
: (82)

5.2.1. Massless viscoelastic lattice
This model relates to a very low transition speed that can be realized under the

inOuence of viscosity (as in the case of a crack, see Slepyan et al., 1999; Slepyan,
2000, 2002). If the inertia term is neglected, L(k) becomes a real periodic function
and the equality L(±∞) = 1 in Eq. (70) does not hold. We should return to Eq. (68)
which for the considered massless viscoelastic lattice gives us

� F(k) =
P∗

(0 + ik)E

[
1 − 1

L(k)

]
(83)

with Y = 0. In this case, if 0¿ 0 the elongation is discontinuous at �= 0 as follows
directly from the behavior of the viscoelastic unit under discontinuous loading.
The inverse transform for �= ±0 can be represented as a sum of three terms. The

9rst, as a half-residue at k = 0, is equal to 1
2 , the second is

−P∗
2#

∫ ∞

−∞

1 + ikV0
1 + ikV1

[
1 − 1

L(k)

]
sin k�
k

dk

= ∓ P∗
2#

∫ ∞

−∞

1 + ikV0=|�|
1 + ikV1=|�|

[
1 − 1

L(k=|�|)
]
sin k
k

dk

→ ∓P∗0
21

(1 − 〈1=L〉) (� → ±0); (84)
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where 〈1=L〉 is the averaged value of this periodic function, and the third can be written
as

−P∗
2#

∫ ∞

−∞

1 − 0=1
1 + k2

[
1 − 1

L(k=V1)

]
cos(k�=V1) dk

→ − P∗
2

(
1 − 0

1

) [
1 − 2

#

∫ ∞

0

dk
(1 + k2)L(k=V1)

]
(� → ±0): (85)

It follows that

�(±0) = P∗

{
0
21

[1 ∓ (1 − 〈1=L〉)] +
(
1 − 0

1

)
1
#

∫ ∞

0

dk
(1 + k2)L(k=V1)

}
: (86)

For the square-cell lattice it is

〈1=L〉 = 1
#

∫ #

0

sin k=2√
1 + sin2 k=2

dk =
1
2
; (87)

while for modes I and II triangular-cell lattice it is approximately equal to 1
3 .

The limiting values of the integral in Eq. (86) are

1
#

∫ ∞

0

dk
(1 + k2)L(k=V1)

→
{

1
2 〈1=L〉 (V1 → 0)

0 (V1 → ∞):
(88)

Regarding the limit for V1 → ∞ it is assumed that v remains well below the elastic
wave speed, c, not to contradict the quasi-static formulation. This can be possible if
C1 = 1c=a¿¿¿ 1.
Note that the relation

�(+0) = �∗ (89)

must be used now. This relation has the following limiting expressions:

�(+0) =
P∗
2

〈1=L〉 = �∗ (V1 = 0);

�(+0) =
0
1
P∗
2

〈1=L〉 = �∗ (V1 = ∞): (90)

It can be seen that the resistance to the propagation of the considered localized wave,
that is, the required value of P∗, increases with its speed in an initial range of the speed.
This increase is most pronounced for small ratios 0=1. For 0=0; 1¿ 0 the resistance
tends to in9nity when V1 → ∞. Such a boundary layer type of the solution is similar
to that obtained for the quasi-static crack growth in a viscoelastic lattice (Slepyan
et al., 1999). This solution evidences that a stable region, where q(0) decreases as
the speed increases, does exist if 0=1¡ 1. This conclusion, however, is based on the
quasi-static formulation, which is valid if the viscosity times fall into the heart of the
static-amplitude-response domain; that is, if 1c=a is large enough, while 0=1 is small
(see Slepyan, 2000, 2002).
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Note that in the elastic case (1= 0)

�(0) =
P∗
2

〈1=L〉 (91)

for any v and hence the quasi-static regime corresponds to the initial elongation

q0 = q∗ − P∗
2

〈1=L〉: (92)

5.3. Transient problems

Numerical simulations are conducted for transient processes related to the above-
considered steady-state problem for the square-cell bistable-bond lattice. The lattice
nondimensional equations

d2um;n
dt2

= Tg
m+1; n − Tg

m;n + Tv
m;n+1 − Tv

m;n (93)

are considered, where Tg
m;n is the tensile force in the bond connecting the particles

m; n and m − 1; n, while Tv
m;n is the tensile force in the bond connecting the particles

m; n and m; n − 1. Initially the vertical bonds are stressed, while the horizontal bonds
are not. As a result, the force-elongation dependence for the additional deformation
appears di:erent for these two families of the bonds, namely

Tg = � (t ¡ tg); T g = �� − P∗∗ (t ¿ tg);

Tv = � (t ¡ tv); T v = �� − P∗∗ (t ¿ tv);

t ¡ tg: �¡q∗; t = tg: �= q∗;

t ¡ tv: �¡�∗; t = tv: �= �∗ ¡q∗: (94)

The ratios q∗=�∗ and �∗=P∗ are the main input parameters. Note that the ratio, q∗=�∗, is
the safety factor for the horizontal bonds. In other respect, only the latter ratio, �∗=P∗,
is important.
We consider the domain |m|6mmax; |n|6 nmax, where mmax and nmax are chosen

such that the waves reOected from the boundaries do not reach the domain of interest.
Initially the lattice is at rest with � = 0. To set it in motion, at the initial moment,
t = 0, we give the velocity w to the particles n = 0; |m|6 2 and the velocity −w
to the opposite particles, n = −1; |m|6 2, —as the initial disturbance. Note that an
increase in the number of the excited particles in these lines does not inOuence the
wave parameters. The initial particle velocity, w, is set beginning from the minimal
value of w, w=w∗(�∗=P∗), which is enough to initiate the propagating transition wave,
and to w = (2 ÷ 3)w∗.
The results of numerical simulations show that the transition wave does propagate

along a single line if (a) the energy release rate is not too large, G0 ¡ 5:26 (�∗=P∗ ¿
0:228) [in this case, the transition wave speed is subsonic, v¡ 1] and (b) the initial
disturbance is low enough. Otherwise, a multiple-line wave propagates. In this latter
case, the wave fronts in di:erent lines appear shifted relatively each other. Note that
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Fig. 10. Transitions under a low-energy release rate, G0 = 0:625 (�∗=P∗ = 0:4; w∗ = 1:215): (1) w = w∗,
(2) w = 1:5, (3) w = 1:75.

the energy release rate de9nes the sinusoidal waves intensity, and if it is large enough
these waves cause the multiple-line transition—in the same way as a strong initial
disturbance causes that.
In the single-line case, a good coincidence of the transition wave speeds found

analytically, va, and numerically, vc, is found. Note that the right (stable) branch of
the multivalued function v(G0), Fig. 6, is taken into account. The minimal value of the
energy release rate, G0

min, of which the steady-state transition wave exists, is G0
min ≈

0:670 (�∗=P∗ ≈ 0:395); the corresponding speed is va ≈ 0:508.
For the normalized energy release rate less than ≈ 0:670 the steady-state solution

does not exist, while some 9nite disturbance-level-dependent regions of the transi-
tion are found numerically. In Fig. 10, the lines interconnect the discrete points in
which the transition front arrives to the bonds numbered by m (here and below in
9gures of this type the wave front propagation is shown for the 9rst quarter of the
lattice). The results correspond to the bonds n=0;−1 and to various w, beginning from
w = w∗ = 1:215.
Results of calculations in Fig. 11 correspond to G0 = 4 (�∗=P∗ = 0:25; w∗ ≈ 0:271)

and w=0:5. In this case, the transition incorporates six additional lines above the main
one (and also six lines below it). In contrast, the dashed line corresponds to w = w∗,
where only a single-line wave arises. As can be seen in Fig. 11 the multiple-line wave
speed (the same for each line) is somewhat lower than that for the single-line wave.
It is of interest to note that the transition in a line can arise not only at central bonds,
|m|6 2, but also in several bonds with |m|¿ 2 (these points are the local minima of
the curves).
The results for supersonic wave speed are presented in Fig. 12 where the transition

in several lines is shown. In fact, the transition occurs in each line of the consid-
ered lattice strip in this regime. However, in the supersonic regime, the numerically
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Fig. 11. Subsonic transitions, G0 = 4 (�∗=P∗ = 0:25; w∗ ≈ 0:271). From the bottom: the bond lines between
n=−1; 0; 1; : : : ; 7 are shown by solid lines for w=0:5. The dashed line corresponds to a single-line transition
wave obtained in the numerical simulations.
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Fig. 12. Supersonic transitions, G0 =7:5 (�∗=P∗ =0:2); w=0:172. From the bottom: the bond lines between
n = −1; 0; 1; : : : ; 5 are shown.
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determined transition wave speed coincides with that obtained analytically for a single-
line transition.

6. Continuous elastic model

It is of interest to consider the localized transition wave in the framework of the
continuous material model. The related steady-state problem for a continuous elastic
medium can be formulated as that for the upper half-plane, y¿ 0, with the following
boundary conditions at y = 0 for modes I, II, and III, respectively:

6xy = 0 (−∞¡�¡∞); 6yy = −P∗∗ + 2uy (�¡ 0); uy = 0 (�¿ 0); (95)

6yy = 0 (−∞¡�¡∞); 6yx = −P∗∗ + 2ux (�¡ 0); ux = 0 (�¿ 0); (96)

6yz = −P∗∗ + 2uz (�¡ 0); uz = 0 (�¿ 0): (97)

This formulation is the same as that for a crack at �¡ 0 whose faces are loaded by the
above-expressed traction. So, the traction corresponds to the crack faces’ interaction in
the second phase of the initially stressed material—similarly to that shown in Fig. 2.
Also, the energy criterion for the transition is used as in the case of a crack, namely,
we assume that the transition occurs when the energy release rate at the moving point,
�= 0, is critical

G = Gc: (98)

To solve these problems we can use the corresponding results for the steady-state
crack dynamics (see e.g. Slepyan, 2002, formulas (9.83)–(9.87)) with the crack face
traction de9ned in the relations (95)–(97) for �¡ 0. In this way, we obtain the gov-
erning equation as

L(k)6+ + u− =
P∗∗L(k)
0 + ikv

(99)

with

L(k) =

[
2 +

�
√

(0 + ik)(0 − ik)
(1 − ))D0(v)

]−1

; (100)

where � is the shear modulus, ) is the Poisson’s ratio (for mode III it must be taken
)= 0) and for subcritical speeds

D0(v) = − v2
√
1 − v2=c21

(1 − ))c22R(v)
(mode I);

D0(v) = − v2
√
1 − v2=c22

(1 − ))c22R(v)
(mode II);

D0(v) =
1√

1 − v2=c22
(mode III); (101)
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where R(v) is the Rayleigh function and c1;2 are the longitudinal and shear wave
speeds, respectively.
We now introduce a normalized function as

L0(k) = *(k)L(k); *(k) =
�
√

(0 + ik)(0 − ik)
(1 − ))D0(v)

: (102)

This function satis9es the conditions

L0(k) → 1 (k → ±∞); Ind L0(k) = 0 (103)

required for the use of the Cauchy type integral for the factorization. As a result, we
have

L(k) = L+(k)L−(k); L±(k) = L0±(k)=*±(k);

L0±(k) = exp
[
± 1
2#i

∫ ∞

−∞

ln L0(%)
% − k

d%
]

(±Ik ¿ 0);

*±(k) =

√
�(0 ∓ ik)

(1 − ))D0(v)
: (104)

The factors have the following asymptotes:

L0±(k) → 1 (k → ± i∞);

L±(k) ∼
√

(1 − ))D0(v)
�(0 ∓ ik)

;

L±(0) =
1√
2
: (105)

Eq. (99) can now be represented as

L+(k)6+ +
u−

L−(k)
=

P∗∗[L+(k) − L+(0)]
0 + ik

+
P∗∗L+(0)
0 + ik

: (106)

The 9rst terms in the left- and right-hand sides are regular in the upper half-plane k
with the real axis, while the second terms are regular in the lower half-plane with its
boundary. This allows us to write down the required solution as

6+ =
P∗∗

0 + ik

[
1 − 1√

2L+(k)

]
∼ P∗∗√

s

√
�

2(1 − ))D0(v)
(k = is; s → ∞);

u− =
P∗∗√

2(0 + ik)
L−(k) ∼ P∗∗

s3=2

√
(1 − ))D0(v)

�2
(k = −is; s → ∞): (107)

The energy release rate at the moving transition point, � = 0, can be calculated as
for a crack (see Slepyan, 2002, formula 1.42). In our case, the total energy release
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Fig. 13. The one-layer lattice strip as a version of Frenkel–Kontorova model. Due to symmetry of the
structure and the prestress, only the upper half-strip can be considered with the vertical bonds 9xed on
the axis of symmetry shown by the dashed line. It is assumed that the vertical bonds obey the bistable
force-elongation relation, while the horizontal bonds always remain in the initial phase—as in the case of
the in9nite two-dimensional lattice.

rate from the upper and the lower half-planes is thus

G = lim
s→∞ s26+(is)u−(−is) =

P2
∗∗
2

: (108)

This is nothing but the energy produced per unit length by the upper and lower crack
face traction at �¡ 0, that is, by the crack faces’ interaction. Such a result could be
expected from the beginning. Indeed, in the subcritical steady-state regime, there exist
no waves which could carry energy away, and only the singular transition point can
consume the produced energy. So, in contrast to that in the lattice, the energy release
rate is speed-independent here, while the resulting energy release (as the produced
energy, P2

∗∗=2, minus G) is zero. Thus, this solution exists if the required energy, Gc,
is exactly equal to the energy, G, produced by the traction.
What happens if the prestress of the elastic plane (which results in the considered

‘active’ type of the crack faces interaction) is greater than the critical one, that is,
if G¿Gc? In this case, in an elastic body, the steady-state regime does not exist,
and the transition wave speed is not a constant, but asymptotically verges towards the
critical value. In such a quasi-steady-state regime, there exists radiation energetically
equal to the resulting energy release, P2

∗∗=2−G0. Thus the classical, homogeneous-body
formulation leads to a very di:erent result in comparison with that based on the lattice
model where the steady-state regime exists for any, but not too small, resulting energy
release rate, and the speed is energy-release-rate-dependent.

7. Related version of one-dimensional discrete Frenkel–Kontorova model

Consider a square-cell lattice strip consisting of one layer with bistable bonds con-
necting the particle lines n=0 and n=−1, Fig. 13. Due to symmetry the upper half-strip
can be considered as a version of one-dimensional discrete Frenkel–Kontorova model
(also see Kresse and Truskinovsky, 2004) where the particles are connected by bistable
bonds with a rigid substrate. (Note that in the regular Frenkel–Kontorova model the
force–displacement relation is multistable and reversible.) 1 The dynamic equation is

Pum(t) = um−1(t) + um+1(t) − 4um(t) + [P∗ + (1 − �)(2um(t) − �∗)]H (−�);
(109)

1 See http://monet.physik.unibas.ch/∼elmer/Oab/FKModel/.

http://monet.physik.unibas.ch/~elmer/flab/FKModel/.
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Fig. 14. The transition wave speed dependencies for the considered version of Frenkel–Kontorova model
(solid curves) and the corresponding dependencies for the in9nite lattice (dashed curves): (a) � = 0:1,
(b) � = 0:5, (c) � = 1:0, (d) � = 2:0.

where um(t) is the particle displacement. The governing relations (23)–(25), respective
the Fourier transforms of �(�) = 2u(�), follow from this with

L(k) =
h(k) + 2
h(k) + 2�

=
L(k)

�L(k) + 1 − �
;

L(k) = LFK (k) =
h(k) + 2
h(k)

; h(k) = (0 + ikv)2 + 2(1 − cos k): (110)

The solution to the chain problem di:ers from that obtained for the two-dimensional
lattice only by the expression for the function L(k), because, as far as this function
is obtained, the considerations concern only the transition-line bonds. The comparative
results are presented in Fig. 14. It is seen that qualitatively the 1=G0–v dependencies
for FK model are similar to those for the lattice. Quantitatively they are also not too
far from each other, and only the low-speed ‘resonances’ are more pronounced in the
case of the one-dimensional model. The basic di:erences are in the structure of the
dissipative waves. The comparison thus evidences that the transition wave speed not
too strongly depends on directions of the radiation; it mainly depends on the energy
release rate and �.
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