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Abstract

We consider chains of dimensionless masses connected by breakable bistable links. A non-

monotonic piecewise linear constitutive relation for each link consists of two stable branches

separated by a gap of zero resistance. Mechanically, this model can be envisioned as a ’’twin-

element’’ structure which consists of two links (rods or strands) of different lengths joined by

the ends. The longer link does not resist to the loading until the shorter link breaks. We call

this construction the waiting link structure. We show that the chain of such strongly non-linear

elements has an increased in-the-large stability under extension in comparison with a

conventional chain, and can absorb a large amount of energy. This is achieved by two reasons.

One is an increase of dissipation in the form of high-frequency waves transferring the

mechanical energy to heat; this is a manifestation of the inner instabilities of the bonds. The

other is delocalization of the damage of the chain. The increased stability is a consequence of

the distribution of a partial damage over a large volume of the body instead of its localization,

as in the case of a single neck formation in a conventional chain. We optimize parameters of

the structure in order to improve its resistance to a slow loading and show that it can be

increased significantly by delocalizing a damage process. In particular, we show that the

dissipation is a function of the gap between the stable branches and find an optimal gap

corresponding to maximum energy consumption under quasi-static extension. The results of

numerical simulations of the dynamic behavior of bistable chains show that these chains can

withstand without breaking the force which is several times larger than the force sustained by a
see front matter r 2004 Elsevier Ltd. All rights reserved.

.jmps.2004.08.002

nding author. Tel.: +1-801-5817315; fax: +1-801-5814148.

dresses: cherk@math.utah.edu (A. Cherkaev), elena@math.utah.edu (E. Cherkaev).

www.elsevier.com/locate/jmps


ARTICLE IN PRESS

A. Cherkaev et al. / J. Mech. Phys. Solids 53 (2005) 383–405384
conventional chain. The formulation and results are also related to the modelling of

compressive destruction of a porous material or a frame construction which can be described

by a two-branched diagram with a large gap between the branches. We also consider an

extension of the model to multi-link chain that could imitate plastic behavior of material.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Dynamics; Phase transition; Bistable-bond chain; Asymptotic analysis
1. Introduction

We consider a chain as an assembly of concentrated masses connected by massless
links. Each link satisfies a piecewise linear constitutive relation: the force–elongation
dependence for the link is characterized by two stable branches, a basic low-strain
branch and a high-strain branch as in Fig. 1. Such a dependence can be achieved, in
particular, in the waiting link structure considered below. While theoretically a
material can absorb energy until it melts, the strain localization dramatically
decreases the limit in conventional materials. To the contrary, designed here
constitutive relations are of hardening type which leads to the delocalization of
strain. In addition, such a non-monotonic dependence leads to a pronounced energy
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Fig. 1. (a–c) Two-branch piece-wise linear functions show bistable force–elongation diagrams.
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dissipation. Both these factors considerably rise the limit of the energy consumption.
A stable state corresponds to one of the stable branches of the constitutive relation.
Under a dynamic action, each element of the chain transits from the basic lower-
strain state to the higher-strain state. This generates a transition wave that
propagates along the chain. This transition wave is accompanied by high-frequency
dissipative waves which intensity depends on the slopes of the stable branches of the
constitutive relation and on the gap between them. Hence, the maximal energy
consumption and the ability of the structure to withstand impacts depend on the
design of structural elements.

A discrete chain represents a simplest adequate model suitable for both
analytical studies and numerical simulations of transition waves which are also
present in more complicated models of periodic bistable structures. This
model possesses some advantages in comparison with a continuous model of a
bistable material. First of all, in contrast to a continuous model, it leads to a unique
solution. It needs less assumptions, allows one to see the details of the damage,
and to account for the high-frequency models that are ‘‘invisible’’ in the
continuum limit. Some bistable-link chain models were considered in a number of
works (see Slepyan and Troyankina, 1984, 1988; Puglisi and Truskinovsky, 2000;
Slepyan, 2000, 2001, 2002; Balk et al., 2001a,b; Charlotte and Truskinovsky, 2002;
Ngan and Truskinovsky, 1999; Cherkaev and Zhornitskaya, 2003). In the
present paper we consider a chain with waiting links, formulate the dynamic
equations, and estimate the gap role in the resistance of the chain to quasi-static and
dynamic extension. We also present results of numerical simulations of the
dynamic behavior of bistable chains demonstrating their high resistance to
extension. Due to the damage delocalization and energy dissipation, these chains
can withstand an impact several times larger than the impact sustained by a
conventional chain.

Motivation: The considered models and results relate to different areas where the
transition path contains an unstable region. In particular, the following related
problems can be mentioned:

(a) A structure designed to withstand impacts or explosions. For such dynamic
actions the major quality of a material or a construction is the limiting energy
consumption which could be increased by the design.

(b) Fracture of a porous material or a frame construction under compression can
be described by a similar two-branch diagram. In the case of a porous material the
dissipation is pronounced and temperature effects can be considerable; the
dissipation rises the temperature so significantly that the heat pressure becomes
enormous (see Zel’dovich and Raizer, 1966, 1967).

(c) The constitutive model with a large gap between the branches corresponds to a
framed construction of a multi-story building.

(d) Stick-slip sliding in friction and earthquake behavior is a similar type
phenomenon: in this case a large amount of energy is released due to the transition
from one stable state to another one. Lastly,

(e) The phase transition process in a material may also be considered using the
bistable chain models.
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2. Model: bistable-link chain

2.1. Equilibria of bistable chain

Chain with bistable links: Consider a periodic chain of equal masses, M, connected
by equal bistable links of length a (see Fig. 2). The tensile force TðqÞ acting in each
link is a non-monotonic function of the elongation q containing two stable
(increasing) branches separated by an unstable region. Under a monotonic
elongation TðqÞ is characterized by

dT

dq

40 when qoq� the first, original stable branch;

p0 when q�oqoq� þ G unstable region;

40 when q� þ Goqoq�� the second stable branch

8><
>: (1)

and T ¼ 0 when q4q��: Here G is the gap between the stable branches. This
dependence is shown in Fig. 1(c). Note that this non-monotonic force-elongation
dependence corresponds to a non-convex strain energy of the link.

Damage parameter: In the initial state the elongation, q; is smaller than the critical
value q�; qoq�; which marks the first stable branch of the diagram. When the link is
monotonically elongated and the elongation reaches the critical value q�; the link
transits to the second stable branch passing through the instable region. Due to
instability, the transition is characterized by an abrupt jerk-type motion that creates
a significant kinetic energy of the masses connected by the link. It is remarkable that
the related dynamic effects are significant independently of the rate of loading. This
is a characteristic feature of a bistable structure.

The state of the link depends on the elongation history: once damaged, the link
stays damaged. Therefore, if the elongation reaches the second stable branch, the
unloading follows a different path. We assume that for unloading the tensile force
TuldðqÞ is a monotonic function with

TuldðqÞpTðqÞ:

The difference in the loading and unloading reflects irreversibility. This dependence
is shown by a dashed line in Fig. 1(b). In general, the function TuldðqÞ also depends
on the maximal elongation reached during the loading; we, however, assume that
Fig. 2. Waiting link structure.
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after the link reaches the second stable state the force is completely defined by the
strain independently of the maximal elongation (if the link is not broken, i.e. if the
maximal elongation is below q��). Hence, the second-branch state is assumed brittle-
elastic as well as the first one.

In the present paper, we use the simplest model of damage—the breakage.
We assume that the point q ¼ q� is a point of discontinuity where the tensile
force suddenly drops to zero. Then it remains to be at zero in the gap region,
q�oqoq� þ G; see Fig. 1(c). To account for an irreversible damage we introduce a
time-dependent damage indicator Dðt; qÞ which depends on the elongation history.
Damage indicator is equal to zero in the beginning of the elongation and until the
elongation reaches the critical value q� first time. Then it becomes equal to one:

DðtÞ ¼
0 when maxt2½0;tÞ qðtÞoq�;

1 otherwise:

�
(2)

Alternatively, one may account for a non-instant damage that corresponds to the
differential equation for the accumulated damage (see Cherkaev and Zhornitskaya,
2003):

_DðtÞ ¼ Y ðq;DÞ; Dð0Þ ¼ 0; (3)

where

Y ðq;DÞ ¼
W if q4q� and Do1;

0 otherwise

�
(4)

and WX0 is the rate of damaging. It states that the rate of accumulation of the
damage increases when the elongation q ¼ qðtÞ is above the threshold, q�; and the
link is not fully damaged, that is DðtÞo1: The breakage corresponds to the limiting
case, W ¼ dðt � t�Þ; where d is the delta function and t� is the moment when the
elongation reaches the value q�: This model with a continuous damage parameter is
computationally more stable than that in Eq. (2).

The state of the link under any time-dependent loading is described as

Tðq;DÞ ¼ ½1 �D1ðtÞ	T1ðqÞ þ ½1 �D2ðtÞ	T2ðqÞ; (5)

where T1ðqÞ is the dependence for the first stable region (the first branch) and T2ðqÞ is
that for the second branch with T2 ¼ 0 for qoq� þ G: The first damage parameter
D ¼ D1 is defined in Eq. (2), and the damage parameter D ¼ D2 is defined by the
same relation, but with q�� instead of q�: The unloading follows the first branch if
D1 ¼ 0 and the second one if D1 ¼ 1;D2 ¼ 0: The link is completely broken if
D2 ¼ 1: Recall that T2ðqÞ is monotonic, and the unloading path smoothly continues
the second branch of the loading path. This formulation in terms of the damage
parameters is exploited in the computational scheme.

2.2. The waiting-link structure

A bistable bond can be realized as a ‘‘waiting link’’ or ‘‘waiting element’’ structure
(see Cherkaev and Slepyan, 1995). An element of the structure, the link or the bond,
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consists of two generally parallel links, one straight and the other slightly curved,
joined by their ends, see Fig. 2(a). The straight (basic) link resists the elongation as
an elastic-brittle one. It is assumed that the longer (waiting) link does not resist until
it is straightened (the bending stiffness is neglected). Then it starts to resist similarly
to the basic link. This curved link is called the waiting one because it ‘waits’ for the
right time to start to resist.

Elongation of the basic link: Assume that the material is elastic-brittle: the tensile
force depends on the elongation q as:

TbðtÞ ¼
mbq if 0oqoq� and qðtÞoq� for tot;

0 otherwise;

�
(6)

where mb is the modulus of the basic link. Recall that this link resists only in a limited
range of elongations. It does not resist when contracted due to the loss of Euler
stability under compression, and does not resist when extension is too large because
it breaks.

Using the introduced damage parameter DðtÞ ¼ Db we express the stress–strain
relation in the basic link as:

Tbðq;DbÞ ¼ ½1 �DbðtÞ	mb q HðqÞ; (7)

where the subscript b denotes a value belonging to the basic link. The energy Eb

stored in this link is equal to

Ubðq;DbÞ ¼ ð1 �DbÞ
1
2
mbq2

� �
þDb

1
2
mbq2

�

� �� 	
HðqÞ: (8)

Waiting link: The force–elongation dependence for the waiting link is similar to
that for the basic link, but is shifted by the length Gþ q�: The force–elongation
dependence Twðq;DwÞ corresponding to this link is

Twðq;DwÞ ¼ ½1 �DwðtÞ	mwðq � q� � GÞHðq � q� � GÞ; (9)

where mw and Dw are the modulus and the damage parameter of the waiting link. The
damage parameter Dw is defined as

DwðtÞ ¼
0 when maxt2½0;tÞ qðtÞoq��;

1 otherwise:

�
(10)

Recall that the waiting link starts to resist when the basic link is broken, i.e. GX0:
The whole assembly is bistable because the tensile force T is a sum of Tb and Tw:

Tðq;Db;DwÞ ¼ Tbðq;DbÞ þ Twðq;DwÞ: (11)

Note that to achieve the bistability, an additional (hidden) length of the waiting link
has been utilized. However, this does not mean that this additional length should be
large if the gap is large, because the large gap means a relatively large elongation, but
not the length.

The design parameters of the waiting link chain include: the elongation
parameters, q�;G and q��; and the modules, mb and mw: For the case when the
basic and waiting links are made of the same material, we use the representation

mb ¼ am; mw ¼ ð1 � aÞm; (12)
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where m is the modulus of the element of the combined thickness of the links, and a is
a fraction of material that is put in the basic link. In this case a is a design parameter
in optimization process. We assume that the waiting link is stronger than the basic
one, namely, ao1=2;

ð1 � aÞmq� ¼ max Tw4max Tb ¼ amq�: (13)

3. Quasi-static behavior

3.1. Multiple equilibria and delocalization

Equilibria: A bistable-link chain is characterized by multiple equilibria. Two
locally stable states in each link correspond to the basic branch in the interval
0pqoq� and to the waiting branch of the force–elongation function in the interval
q� þ Goqoq��: If the chain consists of N links, it has 2N states of equilibrium. The
total elongation of the chain qtotal can take N þ 1 different values depending on how
many links are in the first (or in the second) state:

qtotalðTÞ ¼
T

mb

k þ
T

mw

þ q� þ G


 �
ðN � kÞ; (14)

where k ¼ 0; . . . ;N is the number of undamaged links. A real state can be
determined considering the loading history. This implies consideration of
dynamics. Below, we address this issue accounting for the inertia of the masses in
the chain. The delocalization phenomenon is analyzed using a quasi-static
approximation.

Multiple reloading under monotonic elongation (Delocalization): Consider the
chain with the fixed left mass, and let the right mass start to move slowly to the right.
Until the tensile force in the chain reaches the critical value Tðq� � 0Þ only the basic
links resist. At some point, one of the basic links breaks and the corresponding
waiting link is activated. The damaged link elongates, while other links contract to
keep the total elongation reached by the chain. The tensile force in each link of the
chain and hence the strain energy is decreased due to this break, however the work of
the external force stays the same. The difference between the work and the strain
energy is the dissipated energy. Though the connection between the thermal energy
and lattice dynamics is more complex, we can view the dissipated energy as energy of
oscillations which finally transfers to heat. The elongation increases further, and
when the tensile force again reaches the threshold, the basic link in some other bond
breaks and is replaced by the waiting link, and so on. Each break results in loss of a
part of the strain energy of the chain. The process continues until the whole structure
transits to the second stable branch of the force–elongation relation. Then the
elongation of the waiting links reaches the critical value, q��; and the chain breaks
completely.

In this process, multiple periodic breaks and multiple reloading in the chain before
its final rupture reflects the delocalization of large strains. If the number of links is
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large, this delocalization results in a dramatic increase of the total consumed energy
in comparison with a chain of regular links of the same material and weight. The
constraint is that the strength of the second branch, Tðq�� � 0Þ; must be large enough
to withstand the dynamic overshoot in the waiting links caused by the repeated
sudden breaks of the basic links. Note, however, that the overshoot can be
suppressed by internal inelastic resistances which speed up the energy transfer from
the mechanical oscillations to heat (see Slepyan, 2000, 2002). A paper by Friesecke
and Matthies (2002) has interesting insights as to why neglecting sinusoidal waves is
justified.

3.2. Quasi-static estimation of the optimal gap

Here we estimate the work of a slowly growing external force stretching the chain.
Consider the initial length of the basic link a as the length unit. In these
terms, the elongation of a link q plays the role of strain; this also concerns q�; q�� and
G: The non-dimensional length of the waiting link is thus ð1 þ q� þ GÞ41:
Consider the chain just before the break of the nth basic link when the tensile
force reaches its critical value mbq�: At this moment the length of the chain consisting
of N links is

Ln ¼ ð1 þ q�ÞðN � n þ 1Þ þ ð1 þ q� þ Gþ q�mb=mwÞðn � 1Þ: (15)

Just after the nth basic link breaks the length remains the same, but the tensile force
decreases. The unknown force Tn is thus defined by the equation

ð1 þ Tn=mbÞðN � nÞ þ ð1 þ q� þ Gþ Tn=mwÞn ¼ Ln: (16)

From these two relations we obtain

Tn ¼ N � n þ
mb

mw

ðn � 1Þ


 �
q� � G

� �
N � n

mb

þ
n

mw

 ��1

: (17)

The number of links is assumed large enough to obtain a non-negative tensile force
from this expression. This condition is satisfied if for any n

NXn �
mb

mw

ðn � 1Þ þ
G

q�

: (18)

The last inequality is valid if

NX
1 þ G=q� for mbXmw;

ð1 þ G=q�Þmw=mb for mwXmb:

�
(19)

If this condition is satisfied the total work, A, of the external force is a sum of the
work produced by extension of the chain before the break of a basic link plus the
work of the final extension of the chain of waiting links:

A ¼
1

2

XN�1

n¼0

ðTn þ q�mbÞðLnþ1 � LnÞ þ
1

2
ðTN þ TmaxÞðLmax � LN Þ (20)
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with

T0 ¼ 0; L0 ¼ N; Tmax ¼ mwðq�� � q� � GÞ; Lmax ¼ ð1 þ q��ÞN : (21)

At the same time, if the basic and waiting links are not connected with each other,
the total strain energy is

U ¼ 1
2
N½mbq2

� þ mwðq�� � q� � GÞ2ð1 þ q� þ GÞ	: (22)

We assume for simplicity that the basic and waiting links made of elastic material
with the same modulus, mb ¼ mw ¼ m; but the waiting link is of a higher strength,
q��4q�: In this case,

Ln ¼ ð1 þ q�ÞðN � n þ 1Þ þ ð1 þ 2q� þ GÞðn � 1Þ;

Tn ¼
m
N

½ðN � 1Þq� � G	;

A ¼
m
2
fð1 � 1=NÞ½ð2N � 1Þq� � G	ðq� þ GÞ þ Nq2

�

þ ½q�� � G� ðq� þ GÞ=N	½Nðq�� � 2q� � GÞ þ q� þ G	g;

U ¼
m
2

N½q2
� þ ðq�� � q� � GÞ2ð1 þ q� þ GÞ	: ð23Þ

In addition, the material weight, Q, is assumed to be proportional to the total length
of the links, that is

Q ¼ C0 ð2 þ q� þ GÞN; (24)

where C0 is a constant.
The optimal value of the gap G ¼ Gopt between the branches can now be found

maximizing the ratio A=Q: Recall that we consider a chain with a large number of
links. Both the basic and waiting link materials are rigid; they are of the same
modulus, but the critical elongation of the basic link q�� � q� � G; is larger then the
critical elongation of the waiting link. So, it is assumed that

Nb1; q�51; q�� � q� � G ¼ C1q�; (25)

where C141 is a moderate constant, say, C1 ¼ 1:5 (see, for example, Fig. 1c). In this
case, Goptbq�; and the considered values can be expressed as

A �
m
2
ð2Nq� � GÞG;

Q � C0ð2 þ GÞN;

U �
m
2

Nq2
�½1 þ C2

1ð1 þ GÞ	o
m
2

Nq2
�C2

1ð2 þ GÞ	: (26)

Now, up to the G-independent multiplier

A

Q
�

ð2Nq� � GÞG

2 þ G
; (27)
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and the optimal value of the gap is

Gopt � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ q�N

p
� 1

� �
: (28)

For a large N, this value of the gap satisfies the condition in (19). In terms of
dimensional distances, i.e. for an arbitrary value of a, the optimal gap is

Gopt � 2að
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ e�N

p
� 1Þ; e� ¼ q�=a; (29)

where e� is the critical strain of the basic link. For the work A and the strain energy U

in the chain with the optimal gap and Nb1 we obtain

A � 2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ q�N

p
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ q�N

p
� 1Þ2;

UomC2
1Nq2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ q�N

p
: ð30Þ

Consider for example the optimal-gap chain with q� ¼ 0:01;N ¼ 300;G ¼ Gopt ¼

2: Under the quasi-static elongation of the chain, qchain; the elongation–tensile force
diagram for the chain is presented in Fig. 3. The dependence is valid until all 300
basic links are broken; then the tensile force monotonically increases up to the
waiting link critical value and becomes zero when it breaks.

We compare the energy consumption in the optimal bistable-link chain and in the
conventional chain consisting of regular links. The conventional chain breaks when
one of the links is broken, hence the energy consumption is limited by the strain
energy corresponding to the breakage of a regular link. To obtain a more
transparent result we use a larger estimate of the strain energy U as the last
expression in Eq. (26), thus decreasing the optimal efficiency E of the bistable
structure. If the gap is as in Eq. (28), for Nb1 the efficiency E is an increasing
function of N,

E ¼
A

U


ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ q�N

p
� 1Þ2

q2
�N

�
N=4 ðq�N51Þ;

1=q� ðq�N ! 1Þ:

�
(31)

This ratio can be made very large. For example, if the basic link limiting strain is
q� ¼ 5 � 10�3 and N ¼ 32; the efficiency E  8; while it approaches a much higher
value, E  200; in the case of a long chain, Nb200:

Thus, if the number of links N is large and the chain is properly structured, the
energy, A, equal to the work of the cyclic reloading of the bistable-link chain under a
 

 

qchain

T

21753

Fig. 3. The tensile force under elongation of the chain: q� ¼ 0:01;N ¼ 300; G ¼ Gopt ¼ 2:
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monotonic extension, can be much greater than the limiting strain energy of the basic
and waiting links, AbU : This is the advantage of the considered structure. The
difference A � U is the energy corresponding to the dynamic effects; finally this
energy is transferred to heat. The dynamic effects are described in more details based
on the dynamic formulation in Section 4. The quasi-static approach allows us to
determine only the total ‘dynamic’ energy under the condition of a low extension
rate. Recall that we consider here a brittle linearly elastic material. The fracture
energy itself was not taken into account as well as the energy of possible plastic
deformations. Both these factors will further increase the efficiency because plastic
necks and ruptures are distributed (repeated N times) in the bistable-link chain,
contrary to one neck and one rupture in a non-structured chain.

Finally, it is remarkable that the quasi-static behavior of the elastic-brittle bistable
chain resembles that of an ideally plastic rod (see Fig. 4). In both cases, there is
almost constant resistance to a continued elongation and the irreversibility of strain.
The main difference between natural plasticity and the artificial ideal plasticity of a
waiting-link chain is the discussed above delocalization. If the bistable-link chain is
made of a plastic material, large plastic strains (necks) in the basic link are developed
in each link, while a single plastic neck is developed in a conventional plastic rod.
4. Dynamic behavior

We now use the dynamic formulation to determine the process of the transition
from the low-elongation basic state to the high-elongation state. In dynamics, this
process is characterized by a system of waves which includes long step waves and
oscillating dissipative waves. Recall that, due to instabilities caused by non-
monotonic character of the force–elongation relation, the dynamic effects are



ARTICLE IN PRESS

A. Cherkaev et al. / J. Mech. Phys. Solids 53 (2005) 383–405394
considerable even in the case of an arbitrary low, quasi-static loading rate. The
above quasi-static considerations allowed us to estimate the total dissipated energy,
but not the wave structure.

The dynamics of the chain is described by a system of difference–differential
equations with respect to the displacements, um; of the masses and elongations,
qm ¼ um � um�1: It has the form

M €um þ g _um ¼ Tðqmþ1;D
b
mþ1;D

w
mþ1Þ � Tðqm;D

b
m;D

w
mÞ: (32)

Here m is the number of the mass, g is the coefficient of viscosity introduced to
stabilize numerical simulations, and Db

m and Dw
m are the damage parameters of the

basic and waiting links in mth link (these parameters are defined in Section 3.1). In
the below numerical simulations, the left mass m ¼ 0 is assumed unmoving, while the
right one, m ¼ 32; is subjected to an impact by a rigid mass.

Generally, a subcritical step wave is found propagating ahead of the transition
wave. In a finite chain, when the step wave reaches the opposite (fixed) end of the
chain, it reflects and its magnitude increases. This increase can initiate a contra-
directional transition wave moving towards the initial impact point. Transition wave
can be also initiated when two reflected elastic waves meet. Not that such a reflection
phenomenon can be observed, for example, in a cylindrical shell which can lose the
stability under an axial impact; it is revealed also in numerical simulations of the chain
dynamics shown below. Before the description of the numerical results we estimate the
role of the gap between the branches of the force–elongation relation in dynamics.

4.1. Dynamic estimation of the gap role

We estimate here how the dynamic dissipation depends on the gap between the
stable branches of the constitutive relation. Consider an elastic bistable-link chain
under a time-independent external action given as a longitudinal force applied to the
end chain mass or as a given speed of this mass. Using particle velocities _umðtÞ and
elongations qmðtÞ; we represent the solution as a sum of a long-wave approximation
(as the step wave) and oscillating structure-associated waves. The first term
corresponds to an ‘equivalent’ continuous material rod (as the ‘macrolevel’
description of the chain), while the second one can be referred to the microlevel.
Propagation of the step wave in a bistable (with a non-convex energy) waveguide is
accompanied by an energy release. In the case of a continuous material, this energy is
lost. Considering the discrete elastic chain where there is no energy loss one can see
that the energy released from the propagation of the step wave goes to the excitation
of the microlevel oscillations. This transformation of the energy is here called the
dissipation.

In principle, the dissipation can be determined by examining the step wave in a
continuous material rod. The difficulty is that the transition point (or the critical
elongation) cannot be exactly determined in the framework of a continuous model
because the microlevel oscillations which facilitate overcoming the barrier are not
taken into account in this model. This drawback, however, can be neglected in a
rough estimation of the gap role.
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Let the external force and the tensile force, Tw ¼ mwðqw � q� � yÞ; in the link
behind the transition front be given as a constant. The step wave ahead of the front is
characterized by the tensile force, Tb ¼ mbqb; where qb is the unknown transition
point: 0oqbpq� (see Fig. 4). We now use the mass and momentum conservation
laws. Note that these laws are valid for the long-wave approximation, as well as for
the complete solution for the chain, since the oscillating waves give no contribution
for a ‘long-term’ (macrolevel) consideration. Specifically, we assume that the external
force is applied at the right end of the chain, and the front moves to the left. Then,

vw � vb ¼
qw � q�

a
V ;

Tw � Tb ¼
M

a
ðvw � vbÞV ; (33)

where vw and vb are the particle velocities behind and ahead of the transition front,
respectively, V is the front speed, and M=a is the mass per unit length (in this section
we do not assume a ¼ 1). It follows that

V ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðTw � TbÞ

Mðqw � qbÞ

s
: (34)

Further, the particle velocity in the wave ahead of the front is

vb ¼
aTb

Mc
; c ¼

ffiffiffiffiffiffiffiffiffi
a2mb

M

r
; (35)

where c is the sound speed of the long-wave in the initial-phase chain. We obtain

vw ¼
aTb

Mc
þ

aðTw � TbÞ

MV
: (36)

For a large gap G; the first term in Eq. (36) becomes negligible in comparison with
the second one, and the transition front speed and the particle velocity behind the
front can be approximated as

V �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðTw � TbÞ

MG

r
;

vw �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTw � TbÞG

M

r
: ð37Þ

At the same time, the energy release per unit length G, is asymptotically
equal to the area under the transition line between the points (qb;Tb) and (qw;Tw)
in Fig. 4

G � 1
2
ðTw þ TbÞG; (38)

and the dissipation D per unit time is

D ¼ GV � 1
2
ðTw þ TbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2ðTw � TbÞG

M

r
: (39)
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We thus come to the following results. With an increase of the gap, G; between the
stable branches of the constitutive relation (under the same remaining conditions),
the transition front speed decreases as 1=

ffiffiffiffi
G

p
; while the particle velocity behind the

front increases as
ffiffiffiffi
G

p
: This shows that the larger is the gap, the higher is the speed of

an impact that can be sustained by the link of a given critical tensile force. The total
dissipation is asymptotically proportional to gap (the dissipation per unit time is
proportional to

ffiffiffiffi
G

p
). Recall that the gap is large if it is much greater than the critical

elongation, q�; at the same time it can be much smaller the inter-particle distance, a.
Finally, the dissipation per unit length of the chain is asymptotically proportional

to G=ð2 þ GÞ (recall that the waiting link is slightly longer than the basic one). In
these calculations, we did not take into account an increase of the maximal tensile
force in the second phase caused by the structure-associated oscillations. These
oscillations can be suppressed by internal inelastic resistance which speeds up the
transfer of the mechanical energy into heat. With an inelastic material in mind, the
energy of the oscillations existing in the elastic model can be viewed as the energy
transferred to heat that does not influence the material strength so much as the
additional macrolevel stresses. Note that the similar phenomenon can arise due to
internal friction when the structure is comprised of a number of such chains.
5. Results of numerical simulations

We now discuss numerical simulations of the transition waves in the chain. A
rested chain of N bistable links of the diagram shown in Fig. 1(c) is impacted by a
large mass M0 moving with initial velocity v0: This means that the end mass, m ¼ N;
of the chain is equal to M þ M0 and has initial velocity

_uNð0Þ ¼
v0M0

M0 þ M
(40)

directed to the right. We start the simulations using an impact mass M0 ¼ 120; this
mass is sustained by the conventional chain without waiting elements. The mass
M0 ¼ 125 breaks the conventional chain. Then we model a chain with the waiting
links impacted with the same mass and demonstrate that it sustains the impact.
Increasing the loading mass and adjusting parameters of the links we find the
configurations of the waiting link structures which support an impact of a large mass
without breaking. With various constraints for the parameters of the structure, the
waiting link chain sustains an impact of the mass several times larger than the
conventional chain with non-structured links does.

The equations: The dynamics of the chain is described by Eq. (32), condition for
the mass in the root u0 ¼ 0; the equation for the loaded mass

ðM0 þ MÞ €uN ¼ �TðqN ;D
b
N ;D

w
NÞ; (41)

and Eq. (4) for the damage indicators Db
m and Dw

m where m ¼ 1; . . . ;N : Recall that
the elongation qm is expressed through the displacements um of the masses as
qm ¼ um � um�1 and the tensile force is defined in Eqs. (7) and (9).
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The initial conditions are

um ¼ 0; m ¼ 0; . . . ;N ð42Þ

_um ¼ 0; m ¼ 1; . . . ;N � 1; _uN ð0Þ ¼
v0M0

M0 þ M
: ð43Þ

In numerical simulation, we assume the following:
1.
 The number N of elements is N ¼ 32:

2.
 The impacting mass M0 is much larger than the mass M of a chain particle.

3.
 The speed v0 of the impacting mass is much below the sound speed (the long wave

speed) in the undamaged chain: v05c ¼ a
ffiffiffiffiffiffiffiffiffiffiffi
m=M

p
:

4.
 There exists a gap G in the force-elongation relation, so that the basic link is
completely broken before the waiting link is activated.

For numerical simulations we use non-dimensional values

ûm ¼
um

a
; q̂m ¼

qm

a
; q̂� ¼

q�

a
; q̂�� ¼

q��

a
; Ĝ ¼

G

a
: (44)

In these terms, the initial distance between neighboring masses of the chain is equal
to one (as a ¼ 1).

Results: The computer experiments of the dynamics of the chain simulated using
MATLAB, show that for different constraints for the structural parameters, the
structures with waiting links sustain the loading masses several times greater than the
conventional structures. We stress that this result is achieved using the same amount
of the same material, the only difference is the morphology of the structure.

The first series of experiments investigates the influence of the relative thickness a
(see (Fig. 12)) of the basic link on the strength of the chain. It is assumed that the
element is characterized by an elongation–force function shown in Fig. 8 with m ¼

5; q� ¼ 0:2; the total weight of the elements is constant; the material is only
redistributed between the basic and the waiting links. The parameter a describes a
fraction of material in the bond which is put in the basic link. The value a ¼ 1
corresponds to the conventional elastic-brittle element (absence of the waiting link),
since the thickness of the waiting link is zero. The value ao1=2 describes the bond
with waiting link stronger than the basic link, and a41=2 characterizes the chain in
which the waiting links are weaker than the basic ones; this type of structure does not
delocalize the damage. Different values of the loading mass equal to 120 and 125
correspond to Figs. 5 and 6, respectively. One can see that the chain sustains the
impact in the first case and is broken in the second case. Trajectories of the knots in
the chain with waiting elements, a ¼ 0:25; G ¼ 0:3; impacted by the mass M0 ¼ 350
are shown in Fig. 7. The chain sustains the impact. The elastic wave generates two
waves of a partial damage at both ends of the chain: at the impact point and near the
wall where the magnitude of the elastic wave is maximal. Intensive oscillations of
the masses after all links are partially broken lead to dissipation of the energy
of the impact. Next, we optimize the value of a maximizing the loading mass M0 that
the chain can sustain. We find, that the choice a ¼ 0:17 allows us to increase the
limits of applied mass more than three times (see Fig. 9). We stress that this result is
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Fig. 5. The motion of the knots of the chain without waiting elements impacted by the mass M0 ¼ 120:
The chain sustains the impact.
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Fig. 6. The motion of the knots in the chain without waiting elements impacted by the mass M0 ¼ 125:
The chain is broken. After the break, the bottom masses move up without resistance. However, possible

collisions with neighboring masses are not taken into account in the calculations. As a result, the

trajectories crossing occurs.
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achieved using the same amount of the same material, the only difference is the
morphology of the structure.

Modification of the model (Dissipation): The dynamics of the chain with partially
broken links indicates that the masses are involved in a chaotic motion after the basic
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Fig. 7. Trajectories of the knots in the chain with waiting elements, a ¼ 0:2; G ¼ 0:1; impacted by the mass

M0 ¼ 350: The chain sustains the impact. Observe the elastic wave and two waves of a partial damage

originated at both ends of the chain where the magnitude of the elastic wave is maximal. Notice intensive

oscillations of the masses after all links are partially broken.
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Fig. 8. Example of the constitutive relation corresponding to the links in the chain with waiting elements

used in simulations. Shown constitutive relation is described by the following parameters: m ¼ 5; a ¼ 0:3;
G ¼ 0:25:
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links are broken. It is exactly the chaotic motion phase that leads to the final
breakage of the chain due to excessive elongation of a link. Observing this
phenomenon, we may question the adequacy of the model that does not take into
account a small dissipation that is always present in mechanical systems; this
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Fig. 9. Trajectories of the knots in the chain with waiting elements: a ¼ 0:17; G ¼ 0:1; M0 ¼ 420: The

chain sustains the impact.
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dissipation would reduce the chaotic motion, especially in a long time range.
Accounting for this effect, we introduce a small dissipation into numerical
scheme. ‘‘Small’’ means that it practically does not influence the initial wave of
the damage but reduces the chaotic afterward motion. The small dissipation
would have practically no influence on the behavior of chains made of a stable
material, if the excitation is slow. However, the chain of unstable materials excites
intensive fast-propagating waves no matter how low is the impact speed (see Balk et
al., 2001). To avoid chaotic motion after phase transition, we introduce a small
dissipation g ¼ 0:03: As shown in Figs. 10 and 11 this dissipation suppresses
oscillations but does not prevent the conventional chain from breaking by the mass
of 200 units.

With the assumed gap G ¼ 0:55; we investigated dependence of the strength of the
chain on the parameter a describing the fraction of material put in the basic
damageable links. Numerically approximated velocity of the impacting mass M0 ¼

900 at the moment when the chain breaks is shown in Fig. 12. The value a ¼ 0:245
corresponding to the minimum of velocity actually allows the chain to sustain the
impact. The behavior of the chain with waiting links, a ¼ 0:245; under impact of the
mass equal to 900 units is shown in Fig. 13. The chain sustains the impact
demonstrating 4.5 times greater efficiency comparing with the behavior of the
conventional chain, see Figs. 10 and 11.

Large dissipation: Large dissipation significantly increases the ability of the chain
to resist the impact. In the model with large dissipation, g ¼ 1; the conventional
chain was impacted by a slow moving mass with the initial velocity 0.01. The
behavior of the chain impacted by the masses M0 ¼ 70; 000 and 80,000 is shown in
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Fig. 10. The conventional chain without waiting links with small dissipation, g ¼ 0:03; sustains the impact

of the mass of 190 units. The dissipation suppresses oscillations and allows the chain to support

higher load.
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Fig. 11. With dissipation g ¼ 0:03; the chain without waiting links breaks being impacted by the mass of

200 units. The dissipation suppresses oscillations but does not prevent the chain from breaking.
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Figs. 14 and 15. The dissipation suppresses the oscillations, and the chain resists the
impact in the first case; however, it is broken in the second case.

The wave of phase transition in the model with waiting links is presented in
Figs. 16 and 17. The increase of the dissipation coefficient allows for more
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Fig. 13. Trajectories of the knots of the chain with waiting elements, impacted by the mass M0 ¼ 900: The

chain sustains the extension. The model includes a small dissipation, g ¼ 0:03; the parameters of the

constitutive function are m ¼ 5; a ¼ 0:245;G ¼ 0:55:
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orderly transition since the propagating and reflected waves are suppressed. The
viscous-elastic wave originated at the point of impact of the chain with the mass
M0 ¼ 250; 000 propagates to the root of the chain, reaches the far end and then
reflects; this results in a partial damage of the second to the root link. This partial
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Fig. 14. With large dissipation, g ¼ 1; the chain impacted by a slow moving mass M ¼ 70; 000 with the

initial velocity 0.01. The chain sustains the impact; the dissipation suppresses the oscillations.
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Fig. 15. The same chain without links breaks if it is impacted by a mass M ¼ 80; 000:
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damage dissipates some part of the energy. Eventually partial damage of every link
in the chain leads to dissipation of all energy of the impact, but the chain keeps its
integrity. This can be compared with the chain impacted by the mass M0 ¼ 80; 000;
shown in Fig. 15, when in a similar situation, the damage of the second to the root
link leads to complete damage of the chain.
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Fig. 16. Trajectories of the knots in the chain with waiting elements, a ¼ 0:3; and with a large dissipation,

g ¼ 1; impacted by a slow moving mass M ¼ 250; 000 with the initial velocity 0.01. The chain sustains the

impact; the dissipation suppresses the oscillations. Observe the wave of partial breakage that propagates

starting from the impact point. The closest to the root link experiences a partial damage because of the

viscous-elastic wave.
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Fig. 17. Propagation of the wave of partial damage. Magnification of the detail of the previous picture.
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6. Discussion

The results show a dramatic increase of the strength of the chain with waiting
elements compared to the conventional design. The dissipation further increases the
effect. By delocalization of partial damage these specially structured chains are able
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to absorb and dissipate great amounts of energy and sustain impacts of masses
several times larger than regular chains of non-structured material.
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