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We address an important issue of dynamic homogenisation in vector elasticity for a doubly periodic
mass-spring elastic lattice. The notion of logarithmically growing resonant waves is used in the analysis
of star-shaped wave forms induced by an oscillating point force. We note that the dispersion surfaces for
Floquet–Bloch waves in the elastic lattice may contain critical points of the saddle type. Based on the
local quadratic approximations of a dispersion surface, where the radian frequency is considered as a
function of wave vector components, we deduce properties of a transient asymptotic solution associated
with the contribution of the point source to the wave form. The notion of local Green’s functions is used
to describe localised wave forms corresponding to the resonant frequency. The special feature of the
problem is that, at the same resonant frequency, the Taylor quadratic approximations for different groups
of the critical points on the dispersion surfaces (and hence different Floquet–Bloch vectors) are different.
Thus, it is shown that for the vector case of micro-structured elastic medium there is no uniformly
defined dynamic homogenisation procedure for a given resonant frequency. Instead, the continuous
approximation of the wave field can be obtained through the asymptotic analysis of the lattice Green’s
functions, presented in this paper.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The subject of homogenisation is of great interest to physicists,
engineers and mathematicians. The work in this area goes back
more than 100 years, with the classical and elegant paper by
Rayleigh (1892) being one of foundation stones in analysis of effec-
tive properties of periodic composite media. Mathematical theory
of multi-scale homogenisation approximations has received a sub-
stantial attention, as comprehensively described in the books by
Bensoussan et al. (1978), Sanchez-Palencia (1980), Marchenko
and Khruslov (2006), Bakhvalov and Panasenko (1984) and
Zhikov et al. (1994).

Conventional homogenisation in problems of wave propagation
would normally apply to the case of long wave asymptotics, where
a characteristic size of scatterers within a periodic structure is
much smaller compared to the wavelength of the incident wave.

Resonant waves excited by a harmonic force in uniform square
and triangular lattices were studied by Ayzenberg-Stepanenko
and Slepyan (2008) in the framework of a scalar problem. It was
shown that the resonant waves spread mainly on some separate
rays to form star-like configurations and hence show strong
dynamic anisotropy. This paper presented the underlining struc-
ture of such dynamics including the phenomenon of localisation.
The scalar problem for the nonuniform, periodic square lattice
was examined by Craster et al. (2009, 2010) where the localisation
phenomena were also found for the scalar problem. The papers by
Craster et al. (2009, 2010) also addressed the issue of a high-fre-
quency homogenisation in the neighbourhood of the resonant
modes for scalar formulations related to membrane-like lattice
systems.

There has been a substantial advance in the definition and anal-
ysis of the effective constitutive equations in dynamic regimes. In
this area, the pioneering approach was developed by Willis
(1983), Willis (1984, 1997) and further advanced by Milton et al.
(2006), Milton and Willis (2007), Nemat-Nasser and Srivastava
(2011), Shuvalov et al. (2011), Willis (2011, 2012) and Norris
et al. (2012).

Recent publications by Milton et al. (2006), Milton and
Nicorovici (2006), Milton and Willis (2007), Norris (2008, 2012),
Brun et al. (2009) on the dynamic response of metamaterials and
’s func-

http://dx.doi.org/10.1016/j.ijsolstr.2014.03.015
mailto:abm@liverpool.ac.uk
http://dx.doi.org/10.1016/j.ijsolstr.2014.03.015
http://www.sciencedirect.com/science/journal/00207683
http://www.elsevier.com/locate/ijsolstr
http://dx.doi.org/10.1016/j.ijsolstr.2014.03.015


2 A.B. Movchan, L.I. Slepyan / International Journal of Solids and Structures xxx (2014) xxx–xxx
invisibility cloaks in elastic and acoustic media raised interesting
questions related to approximating of such systems by multi-scale
composites, that may possess such unusual properties as chirality,
negative refraction and negative inertia. The range of frequencies
in such applications would be well outside the standard homoge-
nisation range, and hence the new approach is required.

The paper by Colquitt et al. (2012) addresses the vector prob-
lems for elastic Floquet–Bloch waves in a beam-made triangular
lattice. The analysis of the dispersion relations has revealed a
strong dynamic anisotropy with a certain range of frequencies. It
has also shown the effects of negative refraction for a certain class
of structured interfaces.

The concept of high-frequency homogenisation for problems of
vector elasticity remains a challenge, as several critical points on a
dispersion surface may exist for the same frequency, and these
points may correspond to resonant modes of different physical nat-
ure. It is worth saying that the vector problem considered in this
paper differs substantially from the scalar case. Namely, in the sca-
lar problem, only one group of the related critical points on the dis-
persion surfaces corresponds to a given resonant frequency. This
makes a unique homogenisation approximation possible in the
case of a scalar dynamic lattice. On the contrary, in the case of
the vector problem of elasticity, for the same resonant frequency
there exist several different groups of critical points on the disper-
sion diagram, and this creates a subtlety in understanding of a
dynamic homogenisation, as there is no uniqueness. This fact fun-
damentally changes the approach to the problem.

We address here these important issues for frequencies corre-
sponding to resonant modes within a vector formulations for the
mass-spring triangular elastic lattice. Also, we focus on analysis
of lattice Green’s tensors for a two-dimensional vector problem
of elasticity and show how this powerful approach compares to
multi-scale homogenisation approximations. This analysis incor-
porates asymptotic approximations for the resonant waves. The
directional localisation is then associated with saddle points on
the dispersion surfaces, which are also linked to the anisotropy
in the dynamic regime. According to the structure of the dispersion
relations, there exist several different wave forms corresponding to
the same resonant frequency. Hence, different asymptotic solu-
tions and homogenised equations may be derived for the same fre-
quency. The subtlety is resolved by identifying the reference
resonance modes and analysing the asymptotics of Green’s tensors.
We identify asymptotic solutions for logarithmically growing reso-
nance waves, which, in the case of a saddle point, also resemble the
star-shaped wave forms.
2. Governing equations for a forced elastic lattice

Consider a regular triangular lattice consisting of point masses
connected by massless elastic links. The mass value, the bond
length and stiffness are taken as the natural units. Thus, the lattice
spacing along the bond line is equal to unity, whereas the distance
between the parallel bond lines is

ffiffiffi
3
p

=2. The lattice is subjected to
a time-harmonic external force acting on a given mass. We would
like to identify resonance modes, in particular those on the bound-
aries of the stop bands, and furthermore analyse homogenisation
approximations corresponding to the resonant frequencies.

For the chosen geometry and physical parameters of the peri-
odic lattice, in the long-wave/low-frequency approximation, we
obtain a homogeneous, isotropic, elastic body, which is well-
described in the existing literature. We refer to Slepyan, 2002,
where the effective properties of this homogenised solids are out-
lined in detail. Namely, we have the effective normalised density
. ¼ 2=

ffiffiffi
3
p

, Poisson’s ratio m ¼ 1=3 and the following effective val-
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ues for the speed of the longitudinal, shear and Rayleigh waves:
c1 ¼

ffiffiffiffiffiffiffiffi
9=8

p
; c2 ¼

ffiffiffiffiffiffiffiffi
3=8

p
and cR ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�

ffiffiffi
3
pp

, respectively. The
effective shear modulus for such a lattice in the static approxima-
tion is l ¼

ffiffiffi
3
p

=4.
It will be shown that in the time-harmonic regime, as the fre-

quency increases, this lattice becomes far from being isotropic,
and moreover, governing equations of the homogenised body
may change its type from being elliptic to hyperbolic.

The displacement vector is denoted by
um;n ¼ ðux;uyÞm;n ¼ ðu;vÞm;n, where the integers, m;n, define the
mass position. In the Cartesian coordinates, x; y, we have

x ¼ mþ n
2
; y ¼

ffiffiffi
3
p

2
n; ðm;nÞ ¼ 0;�1;�2; . . . : ð1Þ

The displacement components satisfy the equations of motion
as follows

€um;n ¼ Q 0 � Q 3 þ
1
2
ðQ1 � Q2 � Q4 þ Q5Þ þ Px;m;n;

€vm;n ¼
ffiffiffi
3
p

2
ðQ 1 þ Q 2 � Q 4 � Q 5Þ þ Py;m;n; ð2Þ

where Pm;n ¼ ðPx;m;n; Py;m;nÞ are the external forces, applied to the
ðm; nÞ mass, whereas Qj; j ¼ 0;1; . . . ;5, are the forces acting on
the mass ðm;nÞ from the neighbouring masses, i.e.

Q0 ¼ umþ1;n � um;n; Q 3 ¼ um;n � um�1;n;

Q1 ¼
1
2
ðum;nþ1 � um;nÞ þ

ffiffiffi
3
p

2
ðvm;nþ1 � vm;nÞ;

Q2 ¼ �
1
2
ðum�1;nþ1 � um;nÞ þ

ffiffiffi
3
p

2
ðvm�1;nþ1 � vm;nÞ;

Q4 ¼ �
1
2
ðum;n�1 � um;nÞ �

ffiffiffi
3
p

2
ðvm;n�1 � vm;nÞ;

Q5 ¼
1
2
ðumþ1;n�1 � um;nÞ �

ffiffiffi
3
p

2
ðvmþ1;n�1 � vm;nÞ: ð3Þ

Assuming the time-harmonic vibrations with the amplitudes
Um;n and radian frequency x, we have

um;nðtÞ ¼ Um;neixt:

Correspondingly, the discrete Fourier transform gives

UFFðkÞ ¼
X
m;n

Um;n expðik � xðm;nÞÞ; ð4Þ

where xðm;nÞ is the position vector of the ðm; nÞ-mass. The same
transform applies to the amplitude of the external force acting on
the masses.

The original amplitudes are then defined by the inverse trans-
form, which in our particular case, is given in the form

Um;n ¼
ffiffiffi
3
p

16p2

Z 2p=
ffiffi
3
p

�2p=
ffiffi
3
p

Z 2p

�2p
UFFðkÞe�iðk�xðm;nÞÞ dkx

� �
dky: ð5Þ
3. Elastic compliance and dispersion

We assume that the external load is represented by a time-har-
monic point force with the amplitude vector
P0;0 ¼ P ¼ ðPx; PyÞ; jPj ¼ 1, acting on the central mass, m ¼ n ¼ 0.
With this in mind we find from (2) that

UFF ¼ Ax;kP; ð6Þ

where Ax;k is the compliance symmetric tensor, given by

Ax;k ¼ Bx;k=D: ð7Þ

Here
n elastic structured media: Dynamic homogenisation versus Green’s func-
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Fig. 2. Dispersion surface x ¼ x2ðkx; kyÞ.
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Bxx ¼ �Xþ 3 1� cos
kx

2

� �
cos

ffiffiffi
3
p

2
ky

 ! !
;

Bxy ¼ Byx ¼ �
ffiffiffi
3
p

sin
kx

2

� �
sin

ffiffiffi
3
p

2
ky

 !
;

Byy ¼ �Xþ 2ð1� cos kxÞ þ 1� cos
kx

2

� �
cos

ffiffiffi
3
p

2
ky

 !
; X ¼ x2 ð8Þ

and the function Dðx; kx; kyÞ can be factorised in the form

D ¼ ðX�X1ÞðX�X2Þ; X1;2 ¼ x2
1;2 ¼ F �

ffiffiffi
S
p

: ð9Þ

The quantities F and S are periodic functions of kx and ky defined as
follows

F¼1�coskxþ2 1�cos
kx

2

� �
cos

ffiffiffi
3
p

2
ky

 ! !
;

S¼ coskx�cos
kx

2

� �
cos

ffiffiffi
3
p

2
ky

 ! !2

þ3sin2 kx

2

� �
sin2

ffiffiffi
3
p

2
ky

 !
: ð10Þ

The dispersion of waves in the elastic lattice is governed by the
equation

Dðx; kx; kyÞ ¼ 0: ð11Þ

Two dispersion surfaces, periodic in kx and ky, are identified by the
equations

X�X1;2 ¼ 0:

On the elementary cell of periodicity, these surfaces have com-
mon points, where X1 ¼ X2 ¼ 0, at the origin, kx ¼ ky ¼ 0, and at
the corner points kx ¼ �2p; ky ¼ �2p=

ffiffiffi
3
p

, where there is also
X1;2 ¼ 0. Additional detailed explanation is below. The graphs of
the dispersion surfaces x ¼ x1;2ðkx; kyÞ restricted to the elemen-
tary cell of periodicity are presented in Figs. 1 and 2.

4. Resonant excitation. Asymptotics of Green’s kernels

Floquet–Bloch waves and their dispersion properties are impor-
tant for evaluation of resonant frequencies within a periodic sys-
tem. We refer to Ayzenberg-Stepanenko and Slepyan (2008), and
Colquitt et al. (2012) who have analysed the resonant forms and
Fig. 1. Dispersion surfaces x ¼ x1ðkx; kyÞ.
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star-shaped waves in lattices as well as features of dynamic anisot-
ropy for elastic waves in an elastic triangular lattice.

Note that there is a fundamental difference between the ‘‘near
resonance’’ and the exact case of resonance frequencies. For uni-
formly distributed systems, a steady mode of forced waves/oscilla-
tions exists in a non-resonant case, whereas, in general, no such a
mode exists for forced waves/oscillations at the resonant fre-
quency. Indeed, there exist so-called standing waves. However,
these are considered as free waves/oscillations but not as the
forced ones. Here it will be shown that by considering the resonant
case we have to deal with a transient problem.
4.1. Critical points on the dispersion surfaces

A critical point ðk�x; k
�
y;x�Þ on a smooth dispersion surface

x ¼ xðkx; kyÞ is defined in the classical sense:
@x=@kxðk�x; k

�
yÞ ¼ @x=@kyðk�x; k

�
yÞ ¼ 0. In other words, a tangent

plane at a critical point is parallel to the ðkx; kyÞ plane, and conse-
quently the group velocity of the corresponding Floquet–Bloch
wave equals zero; a wave with the zero group velocity is referred
to as a standing wave. The corresponding forced wave at
ðk�x; k

�
y;x�Þ is the resonant one, and hence we also refer to

ðk�x; k
�
y;x�Þ as the resonant point. Three resonant values of the fre-

quency are considered below. The resonant points at the highest
frequency are of the parabolic type (these are the points of maxi-
mum), whereas the other critical points appear to be the saddle
points. The latter cases are of great interest, as they correspond
to transient, directionally-localised, growing forced waves.

The critical points on the dispersion surfaces, corresponding to
standing waves, are identified by the resonant frequencies, x�i , and
components of the Bloch vector, as shown in Table 1 below.

We note that there are multiple critical points identified for the
same frequency, which makes classical homogenisation impossi-
ble. However, we intend to analyse the profile of the dispersion
surface in the neighbourhoods of individual critical points and
hence identify standing waves and furthermore resonant excita-
tion modes.

The dispersion surfaces crossed by fixed-frequency planes are
presented in Figs. 3–5: in the first of these diagrams, the plane is
taken slightly below the points of maximum, x ¼ x�1 � 0:02, to
make the location of the points visible; in the diagrams (b) and
n elastic structured media: Dynamic homogenisation versus Green’s func-
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Table 1
Positions of critical points on the dispersion surfaces, as defined by components of the
Bloch vector ðkx; kyÞ and the radian frequency x� .

i;x�i ðkx;i1; ky;i1Þ ðkx;i2; ky;i2Þ (kx;i3; ky;i3)

1;
ffiffiffi
6
p

ð0;�2p=
ffiffiffi
3
p
Þ ð�2p;0Þ ð�p;�1:8137994Þ

2;2:25 ð�2:8909370;�2p=
ffiffiffi
3
p
Þ ð�3:3922483;0Þ ð�1:6961242;�2:9377732Þ

ð�4:5870611;�0:6898255Þ
3;

ffiffiffi
2
p

ð0;�2p=
ffiffiffi
3
p
Þ ð�2p;0Þ ð�p;�p=

ffiffiffi
3
p
Þ

Fig. 4. Dispersion surface x ¼ x1ðkx; kyÞ intersecting with the plane x ¼ x�2.
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(c) the critical points are the saddle points on the dispersion
surfaces.

The resonant-frequency dispersion contours are plotted in
Figs. 6–8. As shown in Table 1 (also illustrated by slowness con-
tours), there exist 8, 14 and 8 resonant points at the resonant fre-
quencies x�1;x�2 and x�3, respectively. In particular, the critical
points corresponding to the frequencies x�2 and x�3 are the saddle
points on the dispersion surfaces, whereas x ¼ x�1 represents the
points of maximum on the dispersion surface (see Fig. 6). Note
the connection between Figs. 7, 8 and 4, 5 respectively. Whereas
the formulae (7) and (10) define analytically the dispersion sur-
faces in Fig. 4 and 5 the Figs. 7 and 8 show the cross-points of
the slowness contours, which correspond to the saddle points of
the surfaces x ¼ x1;2ðkx; kyÞ.

4.2. Resonant versus non-resonant excitations

First, we evaluate Bx;k, as in (8), at the resonant points. The
required values are presented in Table 2 below.

As follows from (9), the two dispersion surfaces,
x ¼ x1;2ðkx; kyÞ, intersect at the points, where S ¼ 0, and only at
these points. The function S is defined by (10), as a sum of two non-
negative terms; S ¼ 0 implies kx ¼ 0; �2p; ky ¼ 0; �2p=

ffiffiffi
3
p

. At
these points F ¼ 0, and according to (9), x ¼ 0 at the points of
intersection. Thus the dispersion surfaces x ¼ x1;2ðkx; kyÞ can
intersect only at zero frequency. We also note that no growing
wave is excited by an action corresponding to zero values of
Bxx;Byy or Bx;y presented in Table 2.

The representation (6) is valid for non-resonant excitations,
where D – 0. There is no such a steady state in the resonant case,
and a transient problem should be considered. For the transient
problem we have to replace X by �@2=@t2. In this way, for the fol-
Fig. 3. Dispersion surface x ¼ x1ðkx; kyÞ intersecting with the plane x ¼ x�1 � 0:02.

Fig. 5. Dispersion surface x ¼ x2ðkx; kyÞ intersecting with the plane x ¼ x�3.
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lowing considerations the Laplace transform on t is useful, and a
formulation for the resonant harmonic excitation is obtained
substituting X ¼ �s2 and Peixt ! P=ðs� ixÞ, where s is the Laplace
transform parameter. Thus, we have

uFFL ¼ BP
ðs� ixÞD : ð12Þ
4.3. The dispersion relations in vicinities of the resonant points and the
characteristic lines

The quadratic terms of the power expansion of X ðX1 or X2Þ

X� ðx�i Þ
2 � aijq2

x þ bijq2
y þ cijqxqyðkx;y � kx;y;ij ¼ qx;y;ij ! 0Þ ð13Þ
n elastic structured media: Dynamic homogenisation versus Green’s func-
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Fig. 6. The trace of the x1-surface crossed by the plane x ¼ x�1 � 0:02. Note that a
small negative shift from the resonant frequency has been used to show the
slowness contours in the vicinity of critical points.

Table 2
Coefficients Bxx;Byy;Bxy in the representation (8) of the elastic compliance.

ij Bxx Byy Bxy

11=12 0 �4 0
13 �3 �1 �

ffiffiffi
3
p

21=22 �1:6875 0 0
23=24 �0:421875 �1:265625 �0:730709
31=32 4 0 0
33 1 3 �

ffiffiffi
3
p
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for neighbourhoods of the resonant points located in the first quad-
rant, 0 6 kx;ij 6 2p; 0 6 ky;ij 6 2p=

ffiffiffi
3
p

, are presented in Table 3:
The polynomial in (13) corresponds to the differential operator

E ¼ aij
@2

@x2 þ bij
@2

@y2 þ cij
@2

@x@y
: ð14Þ

The resonant points on the dispersion surfaces at x ¼ x�2;3 are
the saddle points, where the coefficients aij and bij are nonzero
and different by the sign. Thus, the equation E ¼ 0 is hyperbolic
at these frequencies. It is satisfied by an arbitrary function of
/x� y with

/ ¼ c
2a
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

2a

� �2
� b

a

r
; ða; bÞ ¼ ðaij; bijÞ: ð15Þ

In addition, if cij – 0, due to the symmetry there exist another
saddle point with cij1 ¼ �cij. This results in additional values of
the parameter / with a different sign of the first term in (15).
Therefore the slopes of the characteristic lines are given by the
angles relative to the x-axis

a ¼ � arctan
c

2a
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c

2a

� �2
� b

a

r !
: ð16Þ
Table 3
Coefficients of the quadratic approximation (13) in the vicinity of critical points of
dispersion surfaces.

ij aij bij cij

11=12 �0:375 �1:125 0
13 �0:9375 �0:5625 �0:649519
21=22 �0:984375 1:265625 0
23=24 0:703125 �0:421875 �1:94856
31;32 0:875 �0:375 0
33 �0:0625 0:5625 �1:082532
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The values of such angles for the rays associated with the saddle
points of the dispersion surfaces are summarised in Table 4.

It follows that the critical rays for x ¼ x�2 and x ¼ x�3 are ori-
ented symmetrically with respect to each lattice bond line as
should be, namely

a ¼ �0:19913547þ pn
3
ðx ¼ x�2Þ; a ¼ �0:46755781

þ pn
3
ðx ¼ x�3Þ; n ¼ 0;1; . . . ;5; ð17Þ

where the directional angle a ¼ 0 corresponds to a bond line.

4.4. Green’s tensor asymptotics

Substituting s ¼ ixþ s0 in (12) we obtain the following expres-
sions for the oscillation amplitudes

UFFL ¼ ue�ixt
� �FFL ¼ BP

s0D
ð18Þ

with

D ¼ ½ðs0 þ ixÞ2 þX1�½ðs0 þ ixÞ2 þX2�: ð19Þ

To proceed we now note that for a resonant frequency, x ¼ x�i , the
amplitude growing in time is defined by integration in (5) in the
vicinities of the resonant points where X1 or X2 is equal to ðx�i Þ

2.
We note that X� ðx�i Þ

2 ! 0 as k tends to a resonant point. It fol-
lows from this that for the asymptotic representation of the reso-
nant oscillation amplitude we need to consider the case as s0 ! 0.
In this way, putting ðs0 þ ixÞ2 � �x2 þ 2ixs0 we obtain the follow-
ing asymptotic relation of D associated with a resonant point

D � C s0 � i aq2
x þ bq2

y þ cqxqy

� �h i
; ð20Þ

where the constant C is different for different resonant frequencies,
i.e.

C ¼ 2ixðX1 �x2Þðx ¼ x�3Þ; C ¼ 2ixðX2 �x2Þðx ¼ x�1;2Þ: ð21Þ

In turn, the coefficients a; b; c are summarised in Table 3.
Using the relation in (20) for the asymptotic regime,

t !1; x=t ! 0, the integration in the Fourier inverse transform
can be extended over the whole k plane. It follows that the wave
associated with a saddle point ðijÞ, associated with the resonance
frequency x�i , is asymptotically defined as

uij � U ij exp½iðx�i t � kij � xÞ�; and @U ij=@t

¼ _U ij �
ffiffiffi
3
p

16p2C
V :p:

Z 1

�1

Z 1

�1
exp½iðtðaq2

x þ bq2
y þ cqxqyÞ

� xqx � yqyÞ�dqx dqyBijP ¼
ffiffiffi
3
p

8pC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4ab
p

t
exp iRð ÞBijP;

R ¼ bx2 þ ay2 � cxy
ðc2 � 4abÞt ; ða; b; cÞ ¼ ða; b; cÞij: ð22Þ

It follows that the asymptotic approximation for the displacement
amplitude is given by

U ij ¼
Z t

0

_U ijdt �
ffiffiffi
3
p

8pC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � 4ab
p Ei 1;�iRð ÞBijP ð23Þ
Table 4
Coefficients of the quadratic approximation (13) in the vicinity of critical points of
dispersion surfaces.

ij a

21;22 �ðp=3� k2Þ;�ð2p=3þ k2Þðk2 ¼ 0:19913547Þ
23=24 �k2;p� k2;�ðp=3þ k2Þ;�ð2p=3� k2Þ
31;32 �ðp=3� k3Þ;�ð2p=3þ k3Þðk3 ¼ 0:46755781Þ
33 �k3;p� k3;�ðp=3þ k3Þ;�ð2p=3� k3Þ
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Fig. 7. Resonant-frequency slowness diagram, x1 ¼ x�2 ¼ 2:25.

Fig. 8. Resonant-frequency slowness diagram, x2 ¼ x�3 ¼
ffiffiffi
2
p

.

Fig. 9. The star-wave configuration associated with the resonant point
31; t ¼ 2000; jEið1;�iRÞj ¼ 8.

Fig. 11. The star-wave configuration associated with the resonant point x ¼ x�3 in
the second and fourth quadrants of the kx; ky-plane, t ¼ 2000, Ei ð1;�iRÞ ¼ 8.

Fig. 10. The star-wave configuration associated with the resonant points 33 in the
first and third quadrants of the kx; ky-plane, t ¼ 2000, Ei ð1;�iRÞ ¼ 8.
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and

Eið1; iRÞ ¼ �CiðjRjÞ þ i SiðRÞ � p
2

signR
h i

� � ln jRj � c� i
p
2

signRðjRj � 1Þ; ð24Þ

where c is Euler’s constant.
The above asymptotic solution is valid outside the characteristic

line, R ¼ 0, where it becomes singular. To evaluate the wave ampli-
tude on this line, one needs higher-order terms in the Taylor
expansion of the dispersion surface near a critical point. Note that
the characteristic lines defined by the equation R ¼ 0 coincide with
those in (16).

A typical star-shaped wave form associated with a saddle point
is shown in Fig. 9, where the level lines are plotted. Note that for
this symmetric wave the coefficient cij in (14) is equal to zero. In
Figs. 10, 11, we show the wave forms represented by the level lines
of the amplitude of the displacement along the horizontal bond, ux,
for Eið1;RÞ ¼ 3 at t ¼ 400. The amplitude is greater inside the star
and lower outside it. The resonant waves excited at x ¼ x�3 are
shown in Figs. 12 and 13.

5. Homogenisation and concluding remarks

In accordance with (14) and (20), the homogenised equation for
_U associated with a resonant point is

a
@2 _U
@x2 þ b

@2 _U
@y2 þ c

@2 _U
@x@y

� i
@ _U
@t
¼ BP

C
; ð25Þ

where the coefficients, a; b; c, are generally different for different
resonant points (see (20), (21) and Table 3). For a saddle resonant
point, ab < 0, this equation is hyperbolic and the critical rays on
the (x; y)-plane correspond to its characteristics. The solution to this
equation is presented in (22), (23).

Recall that different homogenisation corresponds to different
resonant points at the same frequency. This does not allow for a
global homogenisation, which could correspond to a given reso-
nant frequency. Instead, the global asymptotic Green’s tensor is
built, which represents the continuous approximation of the wave
field. In conclusion, note that while the Green’s tensor is defined by
the inverse transforms, the directions of the resonant wave locali-
sation can be seen in the resonant-frequency dispersion contours.
Indeed, (a) the excited propagation waves correspond to the level
lines since the other free waves have different frequencies; (b)
the contribution to the resonant wave is not given by the resonant
point itself but by a set of the waves corresponding to the level
n elastic structured media: Dynamic homogenisation versus Green’s func-
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Fig. 12. The resonant wave excited by the horizontal unit force, Px ¼ 1; Py ¼ 0 at
x ¼ x�3; t ¼ 2000; jUj ¼ 0:2.

Fig. 13. The resonant wave excited by the vertical unit force, Px ¼ 0; Py ¼ 1 at
x ¼ x�3; t ¼ 2000; jUj ¼ 0:2.
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lines in a vicinity of the former; (c) the group velocities of the latter
are directed along the normal to the level line. Thus, the ‘star’
directions coincide with the normals to the level lines at the saddle
resonant points, that is, at the cross- and angle points of the lines.
Note that the energy transfer in 1D resonant waves is considered in
Slepyan and Tsareva (1987).
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