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Abstract. A plane, periodic, square-cell lattice is considered, consisting of point particles connec-
ted by mass-less viscoelastic bonds. Homogeneous and inhomogeneous problems for steady-state
semi-infinite crack propagation in an unbounded lattice and lattice strip are studied. Expressions
for the local-to-global energy-release-rate ratios, stresses and strains of the breaking bonds as well
as the crack opening displacement are derived. Comparative results are obtained for homogeneous
viscoelastic materials, elastic lattices and homogeneous elastic materials. The influences of viscosity,
the discrete structure, cell size, strip width and crack speed on the wave/viscous resistances to crack
propagation are revealed. Some asymptotic results related to an important asymptotic case of large
viscosity (on a scale relative to the lattice cell) are shown. Along with dynamic crack propagation, a
theory for a slow crack in a viscoelastic lattice is derived.

Key words: asymptotics, clamped strip, cohesive-zone models, dynamic, fracture, Mode III, quasi-
static, square-cell, steady-state, viscoelastic lattice

Nomenclature

a = the bond length
Ae = aµε2(+0)/2 = elastic energy of a broken bond
Av = total energy of a broken bond
A0 = aσ (+0)ε(+0)/2 = effective elastic energy of a broken bond
c = the long shear wave speed
Cα = αc/a = the nondimensional parameter of viscosity
E = (1+ ikVα)(1+ ikVβ) = the complex modulus
G = the global energy release rate as an energy flux from infinity
Ge = Ae/a, Gv = Av/a, G0 = A0/a = local energy release rates
h = [2E(1− cosk)+ (0+ ikV )2]1/2

k = the Fourier transform parameter
L = r/h = L+L−
L+(k) (L−(k)) = regular in the upper (lower) half-plane
KIII = the Mode III stress intensity factor
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L+α = L+(i/Vα)

M = the particle mass at each node in the lattice
m = node number of a particle on a plane parallel to the crack plane
n = node number of a particle on a plane perpendicular to the crack

lying between the linesn = 0 andn = 1
N = −(N + 1) ≤ n ≤ N = a lattice strip of width(2N + 1)a

q = external loading
r = (h2+ 4E)1/2

Rv = Gv/G, Re = Ge/G, R0 = G0/G

S = φ + (1− φ)/L+α

t = time
u = displacement
um,n = displacement of the particle marked by numbersm andn

uF (k) = the Fourier transform ofu(η)

V = v/c = the nondimensional crack speed
Vα = αv/a = a nondimensional creep time
Vβ = βv/a = a nondimensional relaxation time
x = ma = the horizontal coordinate
y = na = the vertical coordinate
α = the creep time
β = the relaxation time
η = m− vt/a = the steady-state coordinate
µ = the bond stiffness
σ = tensile force
σ+(k) (σ−(k)) = the right (left) Fourier transform ofσ(η)

σ+α = σ+(i/Vα)

φ = β/α

9 =
√

2N + 1�

ε = strain
ε+(k) (ε−(k)) = the right (left) Fourier transform ofε(η)

� = exp
[∫∞

0 ArgL(ξ) dξ/πξ
]

1. Introduction

In the case of a viscoelastic material, the shortcomings of both the continuum and
the singular fracture model are most pronounced, as was recognized by Williams
(1962). Williams modified the singular elastic stress distribution to be finite and
constant over a lengthδ, with the load on the uncracked ligament being carried by
a series of discrete Voigt elements. The shortcomings of homogeneous viscoelastic
models are as follows: there is a weak dependence of energy dissipation on the
crack velocity for slow crack speeds, the quasi-static limit for the resistance to
crack propagation does not coincide with that for a stationary crack, and, if the
relaxation time approaches zero, the local energy release vanishes as well (Nuis-
mer, 1974; Knauss and Mueller, 1975). In the latter case, if one were to use an
energy criterion for crack growth, there is no way that such growth can occur. These
shortcomings are due to the fact that the strain rate is infinite at the propagating
crack tip for any nonzero crack velocity.
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To facilitate the discussion of discreteversuscontinuum studies, the term ‘ho-
mogeneous’ will be used in this paper to signify a continuum with no length scale;
the term ‘homogeneous viscoelastic model’ will signify a combined continuum-
singular fracture model.

Traditionally, the homogeneous viscoelastic models have been modified to in-
corporate a cohesive zone ahead of the physical crack. In these cohesive zone
models, cohesive stresses compensate the singularity at the crack tip, and govern
the crack opening profile. The support of these stresses is completely defined by
such a dependence and the requirement that the strain and strain rate be bounded.
Note that the cohesive zone model was initially introduced by Barenblatt for ho-
mogeneous elastic bodies. Cohesive zones do not influence the steady-state crack
propagation criterion (Willis, 1967b), and are important in the case of viscoelastic
fracture.

The necessary and sufficient formulation of a cohesive zone model has not been
stated: each is, in fact, ratherad hocand questions of uniqueness and realism are
always in the background (Costanzo and Walton, 1998; Langer and Lobkovsky,
1998). In an attempt to both provide an alternative model and eventually explore
the deficiencies and advantages of cohesive zone models, a lattice model for vis-
coelastic fracture is introduced in this paper. For instance, both approaches can
provide a viscoelastic fracture model in which the near crack tip strains and the
strain rates are finite, and the viscoelastic properties transition smoothly to the
elastic behavior. Conversely, the viscoelastic lattice fracture model (VLFM) is not
amenable toad hocor supplementary modifications. In cohesive zone models, the
zone itself is a contiguous but separate entity, whilst in the proposed VLFM the
location, orientation, and shape of the process zone are generally not prescribeda
priori .

Quasi-static studies of viscoelastic fracture have been mainly devoted to poly-
mers (Knauss, 1970, 1973, 1974, 1976, 1986, 1989, 1993; Knauss and Dietmann,
1970; Wnuk and Knauss, 1970; Mueller and Knauss, 1971; Schapery, 1975a,
1975b, 1975c; Kanninen and Popelar, 1985) and concrete (Bažant and Jirásek,
1993; Wu and Bažant, 1993; Bažant and Li, 1997; Bažant and Planas, 1998). Dy-
namic nonlattice studies of viscoelastic fracture include those by Willis (1967a),
Kostrov and Nikitin (1970), Atkinson and List (1972), Atkinson and Popelar
(1979), Popelar and Atkinson (1980), Sills and Benveniste (1981), Walton (1982,
1987, 1995), Lee and Knauss (1989), Herrmann and Walton (1991, 1994), Walton
and Herrmann (1992), Ryvkin and Banks-Sills (1992, 1994) and Geubelle et al.
(1998). Surveys of the latter studies were provided by Freund (1990) and Walton
(1995).

An important type of cohesive-zone model originated with a paper by Hillerborg
et al. (1976). Hillerborg required that the post-peak tensile softening behavior be
incorporated by a fundamental but experimentally corroborated stress-separation
curve. This type of model is now known as the ‘fictitious crack model.’ The
fictitious crack model studies by Li and Liang (1986) and Mulmule and Demp-
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sey (1997, 1998), which treat the bulk material behavior as either linearly elastic
or linearly viscoelastic, portray the ability of this approach to analyze problems
undergoing the growth of large-scale process zones. In the viscoelastic fictitious
crack model (VFCM), the dependence of the cohesive stress on the crack opening
displacement and the rate of the crack opening displacement is governed by a
stress-separation law, which is, in effect, a constitutive equation for this particular
cohesive crack model. Mulmule and Dempsey (1998) formulated and applied a
VFCM model to the fracture of sea ice. There the weight function method was
used to compute the required parameters such as the stress intensity factor and the
crack opening displacements. The desired stress-separation curves were backed out
by modeling the loadversuscrack opening displacements at several points.

The dynamic Mode III elastic fracture of a square lattice was considered by
Slepyan (1981a, 1981b, 1982a) for sub-critical and super-critical crack speeds.
The Modes I and II fracture of an elastic triangular lattice were studied by
Kulakhmetova et al. (1984). In these works, the structure-dependent total en-
ergy dissipation was analytically found for the three modes as functions of the
crack velocity. Similar relations were obtained by Slepyan (1976) and Marder and
Gross (1995) for elastic lattice strips. The same problems for anisotropic lattices
(lattices which correspond to anisotropic elastic media) were solved by Kulakh-
metova (1985a, 1985b). Some general conclusions concerning the resistance to
crack propagation in a complex medium are presented in Slepyan (1982b, 1984).
Mikhailov and Slepyan (1986) investigated crack propagation in a composite ma-
terial model. Slepyan and Kulakhmetova (1986) made use of this approach for a
model of rock joints. Finally, the papers by Slepyan and Troyankina (1984, 1988)
were devoted to fracture waves in piece-wise-linear and nonlinear chain structures.
Such structures are used to simulate phase transition dynamics in structured media.
Reviews of works devoted to the fracture of elastic lattices have been provided by
Slepyan (1990, 1993, 1998). In addition, a number of works have been devoted to
the stability of crack propagation in discrete elastic lattices (Fineberg et al., 1991,
1992; Marder, 1991; Marder and Xiangmin Liu, 1993; Marder and Gross, 1995).

In the present paper, steady-state crack propagation in viscoelastic lattices is
considered. To be specific, consider an unbounded medium and a J-type circular
contour surrounding the crack tip. The total energy flux through this contour can
be expressed as the sum of two terms: the first being carried by long-wave/low
frequency waves, as in the case of a homogeneous body, the second by high fre-
quency waves associated with the discrete lattice structure. The first propagates
from the far-field to the crack tip, the second away from the crack tip. The first
inward traveling energy flux dissipates (in part) during propagation to the crack
tip: this is dissipation by the viscoelastic behavior of the material itself. The second
outward traveling energy flux dissipates as well (completely). This dissipation is
also caused by the material’s viscoelasticity. It is important to note that the second
energy flux term does not arise in the fracture of a homogeneous nonlattice material
model. If the radius of the contour is very large, only the first term is involved, and
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the corresponding energy release rate is termed from here on the total or far-field
energy release rate. If the contour is shrunk onto the crack tip (in this paper, this
contour would encircle one bond), both energy fluxes are present: the first is now
less than the far-field, the second is actually maximum. The difference between the
first and second is in fact the local energy release rate which goes to fracture itself.
The definition of this local energy release rate can include only the elastic energy
of the breaking bond, or its total energy. This will be discussed more specifically
later in the paper.

The amount by which the far-field energy has decreased during propagation to
the crack tip may be called the viscous resistance, while the second or outgoing
energy flux may be called the wave resistance to crack propagation. In general,
the wave and viscous resistances are interconnected. However, it is shown in an
important asymptotic case of large viscosity (Cα � 1), that they may be separated.
For a nonzero crack velocity, the wave resistance is asymptotically defined by that
in an elastic lattice with the glassy (short time) modulus, and the viscous resistance
corresponds to a homogeneous viscoelastic material. In the case of a viscoelastic
lattice, vanishingly small creep and relaxation times correspond to an elastic limit,
whereas there is no such limit in the case of a homogeneous viscoelastic material.

In addition, the quasi-static limit for a viscoelastic lattice, in contrast to a homo-
geneous material, corresponds to the stationary crack. In the case of large viscosity,
this leads to a pronounced influence on the resistance to crack propagation over
the initial portion of the crack velocity regime: the resistance increases very fast
with this velocity from the stationary value. The corresponding theory for a slow
crack in a viscoelastic lattice is derived and relations for the resistance to the crack
propagationversusthe crack velocity are presented. For the unbounded lattice,
such a dependence is expressed in an explicit analytical form.

The square-cell lattice considered in this paper represents Mode III fracture.
The fracture Modes I and II based on the triangular-cell lattice will be considered
separately.

2. General Formulation

A square-cell plane lattice is considered. The lattice is assumed to consist of point
particles, each of massM, connected by massless viscoelastic bonds, as portrayed
in Figure 1. Leta, µ, σ andε be the bond length, its stiffness, tensile force and
strain, respectively.

Each bond is assumed to satisfy the standard viscoelastic material stress-strain
relation:

σ + β
dσ

dt
= µ

(
ε + α

dε

dt

)
, (1)

wheret is time;α andβ are creep and relaxation times, respectively, andβ/α = φ.
It is assumed thatα ≥ β ≥ 0. This means that a passive, stable material of the
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Figure 1. The square-cell unbounded lattice.

bonds is considered (see Appendix 1). Note that, under zero initial conditionsσ =
ε = 0 (t = 0), the caseα = β corresponds to an elastic material. A more general
viscoelastic stress-strain relation is considered in Appendix 2.

A crack, formed by the breakage of individual massless viscoelastic bonds, is
assumed to propagate with a constant velocity,v, between two neighboring hori-
zontal lines of particles:y = 0 andy = −a (Figure 1). This means that the time
interval between the breaks of two neighboring bonds,a/v, is assumed to be a
constant. Accordingly, the displacement of each particle is represented in the form

u = u(η, y), η = (x − vt)/a. (2)

Note thatx andy are discrete coordinates of the particles. Conversely,η can be
viewed as a continuous variable because of continuous time,t . Dependencies of
the same type are valid for the force and strain of each bond. The breakage of a
bond placed on the crack line is assumed to occur atη = 0. Thus, the crack is
placed atη < 0 and the intact bonds are placed in front of the crack,η > 0.

Symmetry of deformation of the lattice is assumed:

u(η,−a − y) = −u(η, y), ε(η) = [u(η, 0) − u(η,−a)]/a = 2u/a, (3)

where the crack opening displacementu = u(η) = u(η, 0). Thus the viscoelastic
relation (1) forη > 0 can be rewritten as

σ (η)− Vβσ
′(η) = µ(ε(η)− Vαε

′(η)) = 2µ[u(η)− Vαu
′(η)]/a, (4)

where the parameters are introduced as

Vα = αv

a
, Vβ = βv

a
. (5)
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Note that the viscoelastic relation (4) is valid for a bond before it is broken, and
that it does not incorporate a jump inσ atη = 0. Because of this consideration, the
right-sided Fourier transform (identified from here on by the subscript ‘+’) is used
in the form

σ+(k) =
∞∫
+0

σ (η) eikη dη, ε+(k) =
∞∫
+0

ε(η) eikη dη (Im k > 0), (6)

where the symbol ‘+0’ means the zero limit of a positive value. Similarly, the left-
sided Fourier transform is defined as

σ−(k) =
0∫

−∞
σ (η) eikη dη, u−(k) =

0∫
−∞

u(η) eikη dη (Im k < 0). (7)

Note that for a broken bond the notion ‘strain’ atη < 0 has no meaning. In addition
to the right-sided and left-sided Fourier transforms defined above, the double-sided
Fourier transform, is required. In a generalized sense

uF (k) =
∞∫
−∞

u(η) eikη dη = lim(u+ + u−) (Im k→ 0). (8)

In (8) the Fourier transform is valid for ordinary and generalized functions of slow
growth: functions that can grow withη → ±∞, but not faster than a power ofη.
While being defined on the realk-axis, the Fourier transform can be analytically
extended into the complexk-plane.

The right-sided Fourier transformation of relation (4) leads to

(1+ ikVβ)σ+ + Vβσ (+0) = µ[(1+ ikVα)ε+ + Vαε(+0)]. (9)

In view of the fact thatσ+(k) andε+(k) are regular functions in the upper half-plane
of the complex variablek, it now follows that

ε+β ≡ ε+
(

i

Vβ

)
= φ

µ(1− φ)
[µVαε(+0)− Vβσ (+0)],

σ+α ≡ σ+
(

i

Vα

)
= 1

(1− φ)
[µVαε(+0)− Vβσ (+0)]. (10)

Hence, from Equations (9) and (10),

ε+ = 2u+
a

, E = 1+ ikVα

1+ ikVβ

, φ = β

α
,

ε+ = σ+
µ
− (1− φ)

σ+α + ikVασ+
µ(1+ ikVα)

= σ+
µE
− (1− φ)σ+α

µ(1+ ikVα)
, (11)
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where the pointk = i/Vα is regular. Note thatE and 1/E could have been marked
by the subscript ‘−’ because these functions have no singular point in the lower
half-plane of the complexk-plane.

The Fourier transform of (4) leads to the relation

σF = 2µ

a
EuF . (12)

If uF is replaced byu+, this equality gives us a different function, sayσF∗ :

σF
∗ =

2µ

a
Eu+. (13)

The termσ∗(η) equalsσ (η) defined by Equation (12), but only forη > 0 because
E = E−. ThusσF∗ is not equal toσ+. However, in the following, a relation between
u+ andσ+ is required, and this is the reason why Equation (11) is used but not
Equation (13).

From Equation (11) it follows that

ε(+0) = lim
k→i∞

(−ik)ε+(k) = φ

µ
σ(+0)+ (1− φ)

σ+α

µVα

. (14)

Equations (11) and (14) play a crucial role in the description of steady-state crack
propagation through a layer of viscoelastic bonds. The limiting strain,ε(+0), de-
pends on only two parameters of the stress distribution: the limiting stress,σ (+0),
and the Fourier transform of stress atk = i/Vα: σ+α. Note that whenVα,→ 0

σ+α =
∞∫

0

σ (η) e−η/Vα dη ∼ Vασ (+0). (15)

In this case

σ+α + ikVασ+ ∼ Vα[ikσ+ + σ (+0)] = −Vα

(
dσ

dη

)
+
→ 0, (16)

and as follows from Equation (11)

ε+ ∼ σ+/µ, ε(+0) ∼ σ (+0)/µ. (17)

The latter results correspond to an elastic material with an equilibrium (long
time) modulus as expected. WhenVα → ∞, assumingσ (η)→ 0 whenη → ∞,
it is evident that

σ+α/Vα → 0, ε(+0) ∼ σ (+0)φ/µ, (18)

that corresponds to the glassy modulus as it must.
Let c be the critical crack velocity in the corresponding homogeneous elastic

material (c is the long shear wave velocity for Mode III fracture). The crack velo-
city v is said to be ‘slow’ ifv � c. If Cα ≡ αc/a is large, the strain decreases
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rapidly fromσ/µ and approaches the lower valueφσ/µ over the initial portion of
the crack velocity regime.

The local energy release (the energy spent on fracture itself) may be defined in
several ways. Consider, for instance, the total viscoelastic work,Av, accumulated in
a broken bond, its elastic energy,Ae, which corresponds to the equilibrium modulus
and an effective elastic energy,A0, based on the limiting stress,σ (+0), and strain,
ε(+0). The viscoelastic per-bond energy is defined by

Av = a

x/v∫
−∞

σ
dε

dt
dt = −a

∞∫
0

σ (η)
dε

dη
dη. (19)

Using Parseval’s relation for Fourier transforms of two real functions,

∞∫
−∞

f (x)g(x) dx = 1

2π

∞∫
−∞

f F (k)gF (k) dk, (20)

one can rewrite this expression in the following forms.

Av = a

2π

∞∫
−∞

σ+(k)[ikε+ + ε(+0)]dk

= aσ 2(+0)

2µ
+ (1− φ)

a

2πµ

∞∫
−∞

ikVα

1+ ikVα

(
dσ

dη

)
+

σ+(k) dk

= aφσ 2(+0)

2µ
− (1− φ)

a

2πµ

∞∫
−∞

1

1+ ikVα

(
dσ

dη

)
+

σ+(k) dk

(
dσ

dη

)
+
= −[ikσ+ + σ (+0)]. (21)

In the derivation of this formula, note that
∞∫
−∞

σ+(k)

1+ ikVα

dk = 0

because the integrand is regular in the lower half of thek-plane and it iso(1/|k|)
for |k| → ∞. In this connection, note also that

1

2π

∞∫
−∞
[ikσ+(k)+ σ (+0)]σ+(k) dk
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= − 1

2π

∞∫
−∞

(
dσ

dη

)
+

σ+(k) dk = −
∞∫

0

σ
dσ

dη
dη = σ 2(+0)

2
. (22)

The expression (21) has the following asymptotes:

Av ∼ aσ 2(+0)

2µ
(Vα → 0), Av ∼ aφσ 2(+0)

2µ
(Vα →∞). (23)

The associated elastic and effective elastic energies of a broken bond have much
simpler expressions:

Ae = aµε2(+0)

2
= 2µu2(+0)

a
, A0 = aσ (+0)ε(+0)

2
. (24)

The local energy release rates are now given by

Gv = pAv, Ge = pAe, G0 = pA0, (25)

wherep is a number of the breaking bonds per unit length of the crack. In the
problem considered below,p = 1/a.

Note that for a realistic case whenσ ≥ µε and forη > 0,σ (η) < σ(+0) (given
thatσ (+0) = σmax), it is clear that

µε2(+0)

2
≤ −

∞∫
0

σ
dε

dη
dη < σ(+0)ε(+0). (26)

Thus,

Ge ≤ Gv < 2G0. (27)

The global, far-field energy release rate,G, corresponds to the low-rate modulus
(or equivalently, the elastic homogeneous material). The local and global energy
releases differ by energy dissipation:

G = Gv +D0 = Ge +D, (28)

whereD0 is the total dissipation rate outside the breaking bonds andD is the same
but including dissipation in the breaking bonds.

In this paper, no particular definition of the local energy release rate is favored as
a crack extension criterion. The main goal is to derive comparative results for the
local-to-global energy release ratios, stresses and elongation under the influence
of the discrete structure and the viscoelasticity of the lattice. Simply note that an
increase in a global-to-local energy release ratio is associated with an increase in
the resistance to crack propagation.

Much of the discussion and portrayal of the results will involve the normalized
local energy release rates, which are defined as

Rv = Gv

G
, Re = Ge

G
, R0 = G0

G
. (29)
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These parameters record the lattice influence and are from hereon referred to as
‘lattice factors’. Note that a decrease in the resistance (G) actually implies an
increase inR0, and vice versa.

3. Unbounded Square-Cell Lattice

The dynamic equation of the lattice shown in Figure 1 is

M

(
1+ β

d

dt

)
d2um,n

dt2

= µ

a

(
1+ α

d

dt

)
(um+1,n + um−1,n + um,n+1 + um,n−1 − 4um,n), (30)

wherem andn are horizontal and vertical numbers of a particle, respectively (m ≡
x/a, n ≡ y/a). This equation is valid for particles that are not connected by bonds
across the crack path or on the cracked surfaces: forn > 0 andn < −1.

Via a long-wave (low-frequency) approximation, the lattice corresponds to
a plane homogeneous body of densityM/a2 and shear modulusµ/a. Accord-
ingly, the shear wave propagation velocity is given byc = √aµ/M . The crack
propagation problem is considered below for 0≤ V = v/c < 1.

Assumingun = un(η), η = m − vt/a, whereη is treated as a continuous
variable for eachm, one can rewrite equation (30) in the form

v2

c2

(
1− Vβ

d

dη

)
d2un(η)

dη2

=
(

1− Vα

d

dη

)
[un(η + 1)+ un(η − 1)+ un+1(η)+ un−1(η)− 4un(η)] (31)

while in terms of the two-sided Fourier transform

(h2+ 2E)uF
n − E(uF

n+1+ uF
n−1) = 0, (32)

where

h2 = 2E(1− cosk)+ (0+ ikV )2, r2 = h2+ 4E,

E = 1+ ikVα

1+ ikVβ

, V = v

c
, 0+ ikv = lim

s→+0
(s + ikv) (33)

(see Appendix 4 in connection with the last limit).
Equation (32) is satisfied by the expression

uF
n = uF λn

1,2, uF = uF
0 (34)

with

λ1 ≡ λ = r − h

r + h
, λ2 = 1

λ
. (35)
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For the problem of a crack in an unbounded lattice, given anti-symmetric deform-
ations and thatuF

n → 0 whenn→±∞,

uF
n = uF λn (n ≥ 0), uF

n = −uF λ−(n+1) (n ≤ −1) (36)

Note that|λ| < 1 if s in Equation (33) is positive. Indeed, ifs > 0

sgn ImE = sgnk (α ≥ β), −π < Arg h2 < π,

Reh > 0, Rer > 0, sgn Imh = sgn Imr (37)

and it follows from this that

|r − h| < |r + h|. (38)

Consider now the linen = 0. Letσm be the stress that acts on the particle (m, 0)
from below. Then Equation (30) takes the form(

1+ β
d

dt

)(
M

d2um,0

dt2
+ σm

)
= µ

a

(
1+ α

d

dt

)
(um+1,0+ um−1,0+ um,1− 3um,0). (39)

From this it follows that

(σm)F = σ+ + σ− = −(µ/a)[(h2+ E)uF − EuF
1 ] (40)

or, using Equations (33–36),

σ+ + σ− = −µh(r + h)

2a
uF = −µh(r + h)

2a
(u+ + u−). (41)

Substitutingu+ from Equation (11) into Equation (41) gives

L

2E
σ+ + µ

a
u− = −L− 1

2E
σ− + (1− φ)

σ+α

2(1+ ikVα)
(42)

with

L = r

h
. (43)

It follows from Equation (37) that the index of this function is zero:

IndL(k) = 1

2π
[Arg L(+∞)− Arg L(−∞)] = 0. (44)

In addition,L(k) = 1 (k→ ±∞), and for realk

ln L(k) = ln |L(k)| + iArg L(k)→ 0 (k→±∞) (45)
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with Arg L(0) = 0,

ln |L(−k)| = ln |L(k)|, Arg L(−k) = −Arg L(k). (46)

The functionL may now be represented by the product

L = L+L−, (47)

where

L+(k) = exp

 1

2πi

∞∫
−∞

ln L(ξ)

ξ − k
dξ

 (Im k > 0),

L−(k) = exp

− 1

2πi

∞∫
−∞

ln L(ξ)

ξ − k
dξ

 (Im k < 0) (48)

with

Arg L(ξ) = 0 (ξ = 0,−∞,+∞). (49)

In Equation (48),L+ is a regular function ofk in the upper half-plane, whileL−
is a regular function ofk in the lower half-plane ofk. These functions have the
following asymptotes:

L+ ∼
(

4

1− V 2

)1/4
�√

0− ik
(k→ 0),

L− ∼
(

4

1− V 2

)1/4 1

�
√

0+ ik
, (k→ 0),

L+ = 1 (k = i∞), L− = 1 (k = −i∞). (50)

In the derivation of the expressions in (50), it has been noted that|L| and ArgL are
even and odd functions ofξ as stated in Equation (46). The constant� is defined
by the equality

� = exp

 1

π

∞∫
0

Arg L(ξ)

ξ
dξ

 . (51)

Note that Argr < Arg h (k > 0). Hence ArgL < 0 and� < 1.
Equation (42) may now be expressed in the form

L+
2

σ+ + µE

aL−
u− = −L+σ−

2
+ σ−

2L−
+ (1− φ)

σ+αE

2(1+ ikVα)L−
. (52)
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Consider now the external loadingσ 0 (with σ− as its Fourier transform) to be
of the form:

σ 0 = −q exp(−ik0η)H(−η), σ− = − q

0+ i(k − k0)
, Im k0 ≥ 0, (53)

whereH is the Heaviside unit step function. In this case the first term on the right-
hand side of Equation (52) can be represented in the form:

−L+σ−
2
= [L+(k)− L+(k0+ i0)]q

2[0+ i(k − k0)] + L+(k0+ i0)q

2[0+ i(k − k0)] . (54)

The pointk = k0 is regular in the first term on the right-hand side of Equation (54).
This term is regular in the upper half-plane. The remaining terms on the right-hand
sides of Equations (54) and (52) are regular in the lower half-plane. It now follows
from Equations (52–54), given thatσ+ → 0 when k→ i∞,

σ+ = [L+(k)− L+(k0+ i0)]q
[0+ i(k − k0)]L+(k)

, (55)

u− = [L−(k)L+(k0+ i0)− 1]aq

2µ[0+ i(k − k0)]E + (1− φ)
aσ+α

2µ(1+ ikVα)
, (56)

where

σ+α = Vα[L+(k0+ i0)− L+α]q
L+α(1+ ik0Vα)

,

L+α = exp

 1

2πi

∞∫
−∞

ln L(ξ)

ξ − i/Vα

dξ

 . (57)

This solution is valid ifL+(k0) 6= ∞. If k0 = 0 this function is infinite (in
this case of an unbounded lattice). This property provides a way to obtain the
complementary solution.

The above particular solution is now used to derive the solution for homogen-
eous boundary conditions. Let

qL+(k0) = C, (C = const) with lim q = 0 (k0→ 0). (58)

It now follows from Equation (55) that

σ+ = 1/L+(k0)− 1/L+(k)

0+ i(k − k0)
C. (59)

Because the pointk = k0 6= 0 is regular, the denominator of this expression may
be replaced by−[0− i(k − k0)]. Next, separate Equation (59) into two terms

σ+ = C

[0− i(k − k0)]L+(k)
− C

[0− i(k − k0)]L+(k0)
. (60)
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The limit (k0→ 0) of each term may now be considered separately. In the limit as
k0→ 0, the second term vanishes, and the Fourier transform of the solution takes
the form

σ+α = VαC

L+α

,

σ+(k) = C

(0− ik)L+(k)
,

u−(k) = aCL−(k)

2µE(0+ ik)
+ (1− φ)

aσ+α

2µ(1+ ikVα)
. (61)

The limiting stress and strain atη = +0 are of a special interest. These values
can be obtained by means of the formulas:

σ (+0) = lim
k→i∞(−ik)σ+(k),

ε(+0) = 2 lim
k→−i∞

(ik)u−(k)/a = 2u(−0)/a, (62)

leading to

σ (+0) = C, ε(+0) = CS/µ, S = φ + (1− φ)/L+α. (63)

Note that the expression forε(+0) is based on displacement continuity at the crack
tip (ε(+0) = 2u(+0)/a = 2u(−0)/a), which is valid due to the presence of inertia
(provided by the mass of the particles). The same expression forε(+0) also follows
from Equation (14).

The unknown constantC can be expressed in terms of the far-field stress intens-
ity factor. Indeed, its value corresponds to the long-wave approximation (k → 0)
which follows from Equations (50) and (61) and coincides with the classical
solution for a homogeneous elastic body:

σ+ ∼
(

1− V 2

4

)1/4
C

�
(0− ik)−1/2,

KIII =
(
1− V 2

)1/4 C√
a�

, (64)

where it is taken into account that the averaged stresses are equal toσ/a. The
far-field energy release rate is (see, e.g., Freund, 1990)

G = aK2
III

2µ
√

1− V 2
. (65)

Thus

C = √aKIII �(1− V 2)−1/4 = �
√

2Gµ, (66)
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and

σ (+0) = C = �
√

2Gµ, (67)

ε(+0) = Sσ (+0)

µ
= S�

√
2G

µ
. (68)

Now the energy release ratios can be written. For the viscoelastic lattice
considered, the ratio ofGv/G can be expressed based on the expression in Equa-
tions (21) and (25). Taking into account Equations (61), (66) and (67) this ratio is
given by

Rv = Gv

G
= �2

1− (1− φ)
1

π

∞∫
−∞

Vα

1+ ikVα

L+(k)− 1

|L+(k)|2 dk

 . (69)

The corresponding ratios based on the effective elastic energy and the purely elastic
energy of the broken bond are

Re = Ge

G
= µε2(+0)

2G
= S2�2, R0 = G0

G
= σ (+0)ε(+0)

2G
= S�2. (70)

These expressions reduce to the results obtained by Slepyan (1981a, 1982b) for the
elastic lattice (providedα→ β):

Re = R0 = �2 (E = 1). (71)

Identical results are obtained in the limit asα→ 0 (0≤ β ≤ α).
The role of the discrete structure of the lattice on the dimensionless viscoelastic

parametersCα = αc/a andφ = β/α are shown in Figures 2–7. These plots reveal
the crack-speed-dependent dissipation by both high-frequency wave radiation and
viscosity. The number of such waves, and the energy which they carry out of the
propagating crack tip, depend mainly on the crack speed. In particular, only one
wave mode is excited if the crack speed exceeds half the longitudinal shear wave
speed (approximately), while the number of different wave modes is unbounded as
the crack speed tends to zero. This results in a nonmonotone dependence on crack
speed for lowv/c values. At the same time, the influence of viscosity increases
asφ = β/α decreases. This, in turn, leads to an increase in the total resistance
to crack propagation (which is inversely proportional toR0) and damping of the
dynamic effects due to the radiation.

For the case of relatively low dissipation, it can be seen that a minimum in the
energy radiation exists (as a maximum ofR0). This minimum occurs at half the
critical speed, as in the case of elastic lattices (see also Slepyan, 1998). Radiation
increases without bound as the crack speed approaches the long shear wave speed,
while remaining nonzero as the crack speed tends to zero. In the latter quasi-static
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Figure 2. Effective energy release ratiosversusvelocity for a range ofφ values, given
Cα = αc/a = 10.

Figure 3. Effective energy release ratiosversusvelocity for a range ofCα = αc/a values,
given thatφ = 0.5.

case, the radiation energy,D = D0 = G −G0 =
√

2G0, whereG0 is the fracture
energy on the microscale.

For cases in which the resistance decreases (that is,R0 increases, as for the
curves forφ = 0.75, 0.9, and 1.0 in Figure 2) over the initial crack speed re-
gion, slow stable steady-state crack growth is not possible, given a limiting-strain
criterion (see also Marder and Gross, 1995). However, for a large viscosity,Cα,
and smallφ, the energy release ratio first decreases with the crack speed. In other
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Figure 4. Effective energy release ratiosversusvelocity for a range ofCα = αc/a values,
given thatφ = 0.9.

Figure 5. Effective energy release ratiosversusvelocity for a range ofCα = αc/a values,
given thatφ = 0.1.

words, the wave resistance increases and hence slow crack growth is possible.
This is one of the most important phenomena exhibited by this viscoelastic lattice
model. An increase in the relaxation time,β, leads to the elastic-type behavior
of the energy release ratio, while an increase in the creep time,α, results in
suppression of the dynamic effects.
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Figure 6. Effective energy release ratiosversuslog10(αc/a) for a range ofv/c values, given
thatφ = 0.1.

Figure 7. Energy release ratio for the elastic lattice (φ = 1)

3.1. TRANSITION TO A HOMOGENEOUSMATERIAL

The Fourier-description of the problem for a homogeneous material follows from
that for the lattice as an asymptote fork → 0, by the substitution ofk2/2 for
1− cosk in h2 and 4Ê for r2; Ê equalsE under the condition thata = 1 (under
these conditionk becomes the dimensional parameter of the Fourier transformation
overx). In addition, the second term in the expression foru− in (61) is negligible
in comparison with the first term because it is finite while the first term isO(k−3/2)

if k → 0. Note that this term represents the crack opening displacements which
arise due to the extension of the bonds between the particles on the linesn = 0 and
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n = −1 in front of the crack. In the classical formulation for a homogeneous body,
there is no such layer and there is no corresponding term. Thus

Ê = 1+ ikαv

1+ ikβv
,

h2 = Êk2+ (0+ ikV )2,

L = 2

√
Ê

h
, L+ = 1√

0− ik
,

σ+(k) = C1√
0− ik

, C1 = const,

L− = 2

(
1+ iαvk

1− V 2+ ikv(α − βV 2)

)1/2 1√
0+ ik

,

u−(k) = C1/Ê

(0+ ik)3/2

(
1+ iαvk

1− V 2+ ikv(α − βV 2)

)1/2

. (72)

In the case of a homogeneous material, the expression for the energy release rate
at the moving crack tip corresponds to an elastic body with the short term modulus
because the stress/strain rates tend to infinity in the vicinity of the crack tip and is
given by (Slepyan, 1990)

G0 = lim
p→∞p2σ+(ip)u−(−ip) = C2

1
φ√

1− V 2φ
. (73)

The far-field energy release rateG is given by the long-wave approximation (k→
0) and corresponds to an elastic material loaded under the same conditions. From
Equation (73), under the condition thatα = β,

G = C2
1√

1− V 2
. (74)

Note that this expression coincides with that in Equation (65). Thus the energy
release ratioG0/G is given by

R0 = G0

G
= φ

√
1− V 2

1− V 2φ
. (75)

Note that this ratio depends onφ = α/β but notα andβ separately. This conclu-
sion, however, is valid only for a homogeneous viscoelastic material but not for a
lattice.
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3.2. TRANSITION TO AN ELASTIC LATTICE

Let 0 < Vβ < Vα → 0. In this case, it follows from Equation (57) thatL+α → 1.
Now the relations (67–70) become as follows:

σ (+0) = �
√

2G, ε(+0)→ �
√

2G,

Gv

G
→ Ge

G
→ G0

G
→ �2. (76)

At the same time,E → 1 (so long as|k| does not tend to infinity), and hence the
function� defined by Equation (51) tends to that based onE = 1. Thus, in contrast
to a homogeneous viscoelastic material, the results for a viscoelastic lattice tend to
those for the elastic lattice when the creep and relaxation times,α and β, tend
to zero. This conclusion is not unexpected. Indeed, in the case of a homogeneous
viscoelastic material there is no time-unit besidesα andβ, and hence the associated
energy release ratios can depend only on the ratio of these parameters. In contrast,
a lattice model harbors a time-unit associated with the structure, and an elastic
lattice retains a limit with respect to ratios of the creep and relaxation times to this
time-unit.

Note that for an elastic lattice, the ratios considered in Equation (76) are in-
dependent of the elastic modulusµ/a. It manifests itself only in the dependence
�(V ).

3.3. QUASI-STATIC LIMIT

For a homogeneous material, Equation (75) provides that

R0 = G0

G
= β

α
(v = +0). (77)

Thus in a viscoelastic homogeneous material, there is a finite dissipation even for a
vanishing crack velocity. This is a manifestation of the fact that the energy release
at a moving crack tip corresponds to an elastic body with the glassy modulus, while
the far field corresponds to the low-rate modulus.

In contrast, the quasi-static limit of the local energy release for a viscoelastic
lattice obviously corresponds to an elastic lattice. Indeed, in the case of a large
time-interval between the breakage of two neighboring bonds, the influence of
viscosity on the lattice state has time to vanish. Thus, dissipation does not change
the final strain energy of the bond before it breaks, and this energy is the same as in
the elastic lattice. In this quasi-static case, the resistance caused by viscosity in the
viscoelastic lattice is the same as the wave resistance in the elastic lattice. It can be
determined by the formula (Slepyan, 1982a)

R0 = exp

− 1

π

π∫
0

ln L(k) dk

 (v = +0, Arg L = 0), (78)
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where the functionL for the discrete Fourier transformation overx is the same as
for the continuous transformation fort = 0 (see Appendix 3).

In the case of the square-cell lattice,

R0 = exp

− 1

2π

π∫
0

ln
4+ 2(1− cosk)

2(1− cosk)
dk

 = √2− 1. (79)

3.4. VISCOELASTIC LATTICE WITH α ≥ β = 0

As first pointed out by Kostrov and Nikitin (1970), for crack propagation in a
viscoelastic homogeneous material with 0= β < α, the energy release at the
propagating crack tip is zero. This can be easily seen in Equation (75). This effect
is a consequence of the fact that in this case the short term modulus is infinite. A
different conclusion is reached via a viscoelastic lattice model. Indeed, in the case
of a lattice, the glassy modulus does not play such a dramatic role, and ifβ = 0,
Equations (63), (67) and (68) give

σ (+0) = �
√

2Gµ, ε(+0) = �

L+α

√
2G

µ
(80)

and the energy release ratio (69) is still nonzero as are the ratios in (70).

3.5. VISCOELASTIC LATTICE WITH vα →∞, α/β = CONST

For a given 0< V < 1, whenVα →∞, the functionL+α in Equation (57) behaves
as

L+α ∼
[

4

1− V 2

]1/4√
Vα�→∞ (81)

and hence (see Equation (70))

Re ∼ φ2�2, R0 ∼ φ�2. (82)

To proceed, represent the integrand in (51) as the sum
∞∫

0

Arg L(ξ)

ξ
dξ = Iel+ Ihv,

Iel =
∞∫

δ

Arg L(ξ)

ξ
dξ,

Ihv =
δ∫

0

Arg L(ξ)

ξ
dξ, δ→ 0, Cαδ→∞, (83)
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whereIhv andIel denote the ‘homogeneous viscoelastic’ and ‘elastic lattice’ por-
tions, respectively. InIel, one may replaceE by α/β. With δ small inIhv, one may
replace 2(1− cosk) by k2 andr2 by 4E. That is,

Iel ∼
∞∫

0

Arg L(ξ)
dξ

ξ

(
E = α

β

)
,

Ihv = 1

2

δ∫
0

Arg
1+ iξVα

1− V 2+ iξ(Vα − V 2Vβ)

dξ

ξ

∼ 1

2

∞∫
0

Arg
1+ iξ

1− V 2+ i(1− V 2φ)ξ

dξ

ξ

= π

4
ln

1− V 2

1− V 2φ
. (84)

Now

�el = exp(Iel/π), �hv = exp(Ihv/π) =
(

1− V 2

1− V 2φ

)1/4

. (85)

The integralIel corresponds to an elastic lattice with the instantaneous modulus:

Rel = �2
el

(
E = α

β

)
, (86)

while Ihv, corresponds to a homogeneous viscoelastic material (see Equations (82)
and (75)),

Rhv = φ

√
1− V 2

1− V 2φ
= φ�2

hv. (87)

The energy release ratio for a homogeneous viscoelastic material is portrayed
in Figure 8.

Under the conditions considered here, the function� in (51) may now be
represented via the product

� = �el�hv (88)

and hence

σ (+0) = �el�hv

√
2Gµ, ε(+0) = φ�el�hv

√
2G/µ. (89)

Since the second term in the last expression forAv in (21) tends to zero forVα → 0,
it follows that

Re ∼ φRelRhv, Rv ∼ R0 ∼ RelRhv. (90)
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Figure 8. Energy release ratioversusvelocity for a homogeneous viscoelastic material.

A natural separation of the lattice and viscosity effects has now been obtained.
Note that this case (Vα → ∞ with φ = const) corresponds to a large viscosity as
well as a small size of the lattice cell under given viscosity. Indeed, an increase of
the parametersVα andVβ is equivalent to a decrease of the lattice cell size.

For finite steady-state crack speeds, the viscous resistance to crack propagation
is high if the ratioα/β is large. At the same time, the quasi-static limit corresponds
to the elastic lattice case which is independent of viscosity. Evidently, a pronounced
influence of viscosity on the resistance to crack propagation in a lattice is possible:
the resistance increases very fast with crack velocity in the low velocity regime.

The above separation may be useful even in numerical simulations of vis-
coelastic fracture based on a lattice model. When the crack speed variability
corresponds to a large viscosity time-scale, the lattice effect can be separated and
the coupling with a homogeneous viscoelastic material model becomes transparent.

4. Lattice Strip

Consider now a square-cell lattice strip. Let the particles on the linesn = N and
n = −N − 1 be fixed (see Figure 9). At the crack surfacesη < 0, an external
loading,±q = const, is expected to act on the particlesn = 0 and−1, respectively.
The crack propagates between the linesn = 0 andn = −1 and the displacement
field is anti-symmetric. In the case of this clamped strip

uF
n = uF

0
λn − λ2N−n

1− λ2N
(n ≥ 0),

uF
n = −uF

0
λ−1−n − λ2N+1+n

1− λ2N
(n ≤ −1). (91)
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Figure 9. A square-cell clamped lattice strip.

The same dynamic equations (30) and (39) govern the deformations, where

σ− = −q = const (η < 0). (92)

The following expression for the Fourier transform ofσm follows from Equa-
tions (39) and (91),

σ+ = q− − µ

a
[(h2+ E)uF − EuF

1 ]

= q− − µh

2aω1
(u+ + u−), (93)

in which

q− = qF = q

0+ ik
, ω1 = (r + h)2N − (r − h)2N

(r + h)2N+1+ (r − h)2N+1
. (94)

Substituting foru+ in Equation (93) by the expression in (11), an equation identical
to (42) is obtained, but with a different expression for the functionL:

L = rω2

h
= 4Eω1

h
+ 1, ω2 = (r + h)2N+1− (r − h)2N+1

(r + h)2N+1+ (r − h)2N+1
. (95)

In contrast to the unbounded lattice, the coefficient,L/(2E), and the right part
of Equation (42) are now meromorphic functions: they do not contain branch
points. Indeed

L = D1

D2
(96)
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with

D1 =
N∑

m=0

(
2N + 1

2m+ 1

)
(r2)N−m(h2)m,

D2 =
N∑

m=0

(
2N + 1

2m

)
(r2)N−m(h2)m, (97)

where
(

N

m

)
is a binomial coefficient(0≤ m ≤ N). Further

L→ 1 (k→ ±∞), L→ 2N + 1 (k→ 0), IndL = 0. (98)

The last equality follows from the inequality (37) which shows that Reω2 > 0. At
the same time,ω2→ 1 (k → ±∞). The trajectory forω2 in the complexk-plane
is closed and the pointk = 0 lies outside the area enclosed by this trajectory.

Equation (42) can now be rewritten in the form (52)

L+
2

σ+ + µE

aL−
u−

= q

2(0+ ik)

(
L+ − 1

L−

)
+ (1− φ)

σ+α

2(1+ ikVβ)L−
, (99)

whereL+ andL− are defined by Equations (48) and (96). For the lattice strip, the
latter decomposition gives the following asymptotic expressions:

L+(k)→ 1 (k→+i∞),

L−(k)→ 1 (k→−i∞),

L+(k)→√2N + 1� (k→ 0),

L−(k)→√2N + 1/� (k→ 0),

� = exp

 1

π

∞∫
0

ArgL(ξ)

ξ
dξ

 . (100)

The first term on the right-hand side of Equation (99) must be expressed as the
sum of two terms, one regular in the upper half-plane and one regular in the lower
half-plane (remembering thatE = E−). This is done as follows:

q

2(0+ ik)

(
L+ − 1

L−

)
= C+ + C−,

C+ = q[L+(k)− L+(0)]
2(0+ ik)

, C− = q

2(0+ ik)

(
L+(0)− 1

L−(k)

)
. (101)
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The solution of Equation (99) is now given by

σ+ = q

0+ ik

(
1− L+(0)

L+(k)

)
,

u− = qa

2µE(0+ ik)
[L+(0)L−(k)− 1] + (1− φ)

σ+α

2(1+ ikVα)
. (102)

Subsequently (compare with (14)),

σ (+0) = lim
p→∞pσ+(ip) = q[L+(0)− 1],

ε(+0) = 2u(0)

a
= 2

a
lim

p→∞pu−(−ip)

= q

µ

{
φ[L+(0)− 1] + (1− φ)

[
L+(0)

L+α

− 1

]}
,

u(−∞) = lim
p→0

pu−(−ip) = qaN/µ. (103)

The global energy release rate can be defined as the total work of the traction minus
the elastic energy per unit length of the lattice strip far to the left of the crack tip.
It is

G = 2[qu(−∞)− qu(−∞)/2] = q2N/µ. (104)

For the clamped lattice strip, the energy release ratios are given by

R0 = 1

2N
(9 − 1)

[
φ(9 − 1)+ (1− φ)

(
9

L+α

− 1

)]
,

Re = 1

2N

[
φ(9 − 1)+ (1− φ)

(
9

L+α

− 1

)]2

,

9 = √2N + 1�. (105)

These expressions tend to the corresponding expressions in (70) for the unbounded
lattice whenN →∞.

5. Quasi-Static Behavior

For both the unbounded lattice and the lattice strip, the case of slow steady-state
crack propagation (v � c) is considered. In fact, the asymptotic behavior is ex-
amined forV → 0 without restrictions respective to the parameterVα: it can tend
to zero, a nonzero value, or infinity. In this case, in the determination of the energy
release ratios, the inertia of the lattice can be neglected because the corresponding
term tends to zero for any finitek.
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The functionL(k) has a static limit forV → 0 which is independent of the
creep and relaxation timesα andβ. In the limiting case, it is a periodic, nonnegative
function, and the periodT = 2π . The factorization of a Cauchy-type integral for
a periodic function is required in this case. Eatwell and Willis (1982) and Slepyan
(1982a) showed that any nonnegative, periodic, locally integrable functionL(k)

may be factorized as follows (ArgL = 0), with L = L+L−,

L±(k) = exp

± 1

2iT

T/2∫
−T/2

In L(ξ) cot
π(ξ − k)

T
dξ

 , (106)

where Imk > 0 for L+ and Imk < 0 for L−, respectively;T is the period. The
limiting values are (noting thatL(−ξ) = L(ξ))

L+(k) → L+∞ (k→ i∞),

L−(k) → L+∞ (k→−i∞),

L+∞ = exp

 1

T

T/2∫
0

In L(ξ) dξ

 , (107)

and

L+α = exp

 1

2iT

T/2∫
−T/2

In L(ξ) cot
π

T

(
ξ − i

Vα

)
dξ

 . (108)

The expressions in (61) are unmodified.
For the unbounded square-cell lattice, the functionL in Equation (106) can be

re-expressed in the form

L =
(

4+ 2(1− cosk)

2(1− cosk)+ 0

)1/2

=
(

1+ sin2 k/2

sin2 k/2+ 0

)1/2

. (109)

For this function, the following explicit factorization is valid:

L+ =
[

sin(k/2+ iArsh 1)

sin(k/2+ i0)

]1/2

=
[√

2 sink/2+ i cosk/2

sin(k/2+ i0)

]1/2

,

L− =
[

sin(k/2− iArsh 1)

sin(k/2− i0)

]1/2

=
[√

2 sink/2− i cosk/2

sin(k/2− i0)

]1/2

. (110)

Note that this factorization differs from that derived above in Equation (48) in spite
of the fact that the functionL in Equation (109) is the limit of that defined by
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Equation (43) forV → 0. The asymptotes ofL± are

L+ ∼
√

2

0− ik
, L− ∼

√
2

0+ ik
(k→ 0),

L+ ∼
√√

2+ 1 (k→ i∞),

L− ∼
√√

2− 1 (k→−i∞), (111)

and

L+α =
(√

2+ coth
1

2Vα

)1/2

. (112)

On the basis of these results and the general solution in (61), the far-field stress
is given by

σ+ ∼ C√
2(0− ik)

. (113)

From this it follows that

KIII = C/
√

a, C = √2Gµ. (114)

The Fourier transforms of the stress and crack opening displacement can now be
explicitly written in terms of the far-field energy release rate:

σ+α = Vα

√
2Gµ

L+α

,

σ+ =
√

2Gµ

0− ik

[
sin(k/2+ i0)√

2 sink/2+ i cosk/2

]1/2

,

u− = a

2E

√
2G/µ

0+ ik

[√
2 sink/2− i cosk/2

sin(k/2− i0)

]1/2

+ a (1− φ) σ+α

2µ(1+ ikVα)
. (115)

Note that only the crack opening displacement depends on the crack speed (due
to the presence of the second term); the stresses do not. By neglecting inertia, the
stress distribution is independent of viscosity.

Displacement continuity is not maintained in the vicinity of a crack tip a
massless viscoelastic lattice:

u(+0) 6= u(−0). (116)

In this case, the limiting strain of the breaking bond is defined by the formula in
(14) only.
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The limiting stress, strain and displacement discontinuity are

σ (+0) = ϑ
√

2Gµ,

ε(+0) = ϑZ
√

2G/µ,

u(−0)− u(+0) = lim
k→−i∞

(iku−)− aε(+0)/2= aϑφ
√

G/µ (117)

in which

ϑ =
√√

2− 1,

Z = φ + (1− φ)

[
(
√

2− 1)

(√
2+ coth

1

2Vα

)]−1/2

. (118)

For the slow steady-state fracture of an unbounded viscoelastic lattice, the
energy release ratios are

Re = Ge

G
= (
√

2− 1)Z2, R0 = G0

G
= (
√

2− 1)Z. (119)

Each ratio approaches the value
√

2 − 1 at zero crack velocity (compare with
Equation (79)).

These results, derived independently of the dynamic treatment, present exact
quasi-static asymptotes for low crack velocities (V � 1) in an unbounded lattice,
valid for any value of the parameterVα. While the dynamic asymptote forV →
0, and the quasi-static solution itself are different, the difference manifests itself
just after the breakage of a bond. Then, due to a large time-interval between the
breakage of neighboring bonds, the dynamic state quickly approaches the quasi-
static state. When the parameterVα � 1 the energy release ratios

Re ∼ R0 ∼ (
√

2− 1). (120)

However, if it happens thatV � 1, Cα � 1, φ � 1, such that for a small increase
in the crack velocity the parameterVα becomes large, these same ratios are much
reduced

Re ∼ (
√

2− 1)φ2, R0 ∼ (
√

2− 1)φ. (121)

This reduction, which correlates with an increase in the resistance to crack propaga-
tion, occurs over a small portion of the steady-state crack speed regime. Thus, in
this model, the speed of a slowly propagating crack will depend very strongly on
the applied load or the far-field energy release rate. In these considerations, it has
been assumed that a stable crack obeys a criterion likeG0 ≤ Gc, yet in the case of
a slowly propagating crack, it is the same as a limiting strain criterion:ε(+0) ≤ εc.

Consider now the case of slow steady-state crack propagation (v � c) in a
clamped square-cell lattice strip. The quasi-static solution may be deduced based
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on the formulas (102) and (14) forσ+ andε+, respectively, and by noting (96–97),
with

L = D1s

D2s

,

3 = sin2 k/2+ 0

1+ sin2 k/2
,

D1s =
N∑

m=0

(
2N + 1

2m+ 1

)
3m,

D2s =
N∑

m=0

(
2N + 1

2m

)
3m. (122)

In this case,

L+(0) = √2N + 1,

L+α → L+∞ (Vα → 0),

L+α → L+(0) (Vα →∞) (123)

and

σ (+0) = q(
√

2N + 1/L+∞ − 1), ε(+0) = qZ1/µ. (124)

in which

Z1 = φ

(√
2N + 1

L+∞
− 1

)
+ (1− φ)

(√
2N + 1

L+α

− 1

)
. (125)

For the slow steady-state fracture of an clamped viscoelastic lattice, the energy
release ratios are

Re = Z2
1/2N, R0 = (

√
2N + 1/L+∞ − 1)Z1/2N. (126)

These ratios have the following asymptotes:

Re ∼ R0 ∼ (
√

2N + 1/L+∞ − 1)2/2N (Vα → 0),

Re ∼ φ2(
√

2N + 1/L+∞ − 1)2/2N (Vα →∞),

R0 ∼ φ(
√

2N + 1/L+∞ − 1)2/2N, (Vα →∞). (127)



190 L.I. SLEPYAN ET AL.

6. Discussion

The role of the discrete structure of the lattice and the dimensionless viscoelastic
parametersVα = αv/a andφ = β/α are shown in Figures 2–7. From the macro-
level point of view, both the radiation by high-frequency waves due to the structure
response and dissipation itself can be called ‘dissipation’. The latter quantity is
the difference between the total energy release,G, as the energy flux from infinity
and the energy lost in the breaking bonds,G0. For these plots, the latter energy is
defined in terms of the limiting tensile force and strain:G0 = σ (+0)ε(+0)/2 and
the ratio,R0 = G0/G, is shown.

The curveφ = 1 shown in Figure 2 corresponds to an elastic lattice (shown
separately in Figure 7). The dependence forφ = 1 is characterized by the following
distinctive features. The dissipation is finite for a vanishing crack speed:R0(0) =√

2−1. This is due to radiation by high-frequency waves which are excited by each
break of the bond. In the presence of viscosity (φ < 1), these waves dissipate but
the long-wave energy flux from infinity does not (sincev = +0), and this initial
point, R0(0), is the same for any dissipation. Next,R0 possesses a maximum for
each value ofφ (if φ is not too low), and hence the dissipation (by this radiation)
has a minimum at approximately half the shear wave speed (v/c ≈ 1/2). Further,
R0 has a nonmonotone dependence on crack speed for lowv/c values. This is a
manifestation of a strong dependence on the number of different waves, and the
energy which they carry away from the propagating crack tip, on the crack speed.
Finally, the energy release ratio tends to zero and hence the resistance to crack
propagation increases without bound as the crack speed approaches the shear wave
speed. As can be seen in Figure 2, the influence of viscosity increases shouldφ =
β/α decrease further; this results in a monotonic increase of the resistance over the
whole crack speed range (0< v/c < 1).

An influence ofCα = αc/a on the considered dependencies forφ = 0.5, 0.9
and 0.1 are presented in Figures 3, 4 and 5, respectively. The viscosity has almost
no influence forφ = 0.9 (Figure 4), cannot prevent the nonmonotonic behavior
when φ = 0.5 (Figure 3), and has a strong influence in the case ofφ small
(Figure 5). The influence ofCα for some values of the crack speed in the latter
case is shown in Figure 6.

The energy release ratio for a homogeneous viscoelastic material is portrayed
in Figure 8. In contrast to a lattice, the result here depends onφ only and there is
no pronounced increase of the resistance to crack propagation over an initial region
of the crack speed. Hence slow crack growth cannot occur within the framework
of a homogeneous viscoelastic material model.

The role of the discrete structure of the lattice strip, and the nondimensional
parametersVα andφ, and the strip width is shown in Figures 10–15. In each figure,
the curves differ by the parameterN which characterizes the strip width,(2N+1)a.
These plots correspond toφ = 0.5 andCα = 0.1, 1, 2, 10 and 100 in Figures 10,
11, 12, 13 and 14, respectively. The results for the elastic lattice strip are presented
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Figure 10. Effective energy release ratioversus velocity for the lattice strip with
Cα = 0.1, φ = 0.5.

Figure 11. Effective energy release ratioversus velocity for the lattice strip with
Cα = 1, φ = 0.5.

in Figure 15. Forφ = 0.5, an increase inCα does not eliminate the nonmonotonic
behavior of the energy release ratioversuscrack speed. Also, the lattice strip results
differ from those for the unbounded lattice even for rather large values ofN . At
the same time, qualitatively, the plots forN = ∞ andN = 10 are similar. These
conclusions are important as regards the interpretation of numerical modeling using
lattice strips of finite width. The energy release ratio decreases with a decrease
of the strip width (considering that the bond length,a, remains the same). The
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Figure 12. Effective energy release ratioversus velocity for the lattice strip with
Cα = 2, φ = 0.5.

Figure 13. Effective energy release ratioversus velocity for the lattice strip with
Cα = 10, φ = 0.5.

dependenciesR0(v/c) approach that for the unbounded lattice with an increase of
the width, but not rapidly (see Figures 10–15).

The normalized resistance to quasi-static crack growth in a lattice strip is shown
in Figure 16 for 0≤ Vα ≤ 1000 for a range ofφ-values, and in Figure 17 for
0 ≤ Vα ≤ 10. Note that a boundary-layer type of stable dependence forG/G0

versusVα arises over an initial portion of the first region, with a decrease in the
value ofφ = β/α.
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Figure 14. Effective energy release ratioversus velocity for the lattice strip with
Cα = 100, φ = 0.5.

Figure 15. Energy release ratios for the elastic lattice strip (φ = 1).

7. Conclusions

In this paper, the main aspects of steady-state crack propagation in a square-cell
viscoelastic lattice have been studied. In an elastic lattice, there is structure but
no viscosity. In viscoelastic homogeneous and cohesive-zone models, there is vis-
cosity but no material structure. In this viscoelastic lattice model, there are both
material structure and viscosity. Coupling the latter two factors causes a diverse
array of crack propagation phenomena. As shown, these factors can be separated
in the case of pronounced viscosity,Cα = cα/a → ∞, φ = β/α = const.
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Figure 16. Normalized resistance to quasi-static crack growth in a lattice stripversus
0≤ Vα ≤ 1000 for a range ofφ-values.

Figure 17. Normalized resistance to quasi-static crack growth in a lattice stripversus
0≤ Vα ≤ 10 for a range ofφ-values.

No dynamic effects such as radiation given steady-state crack propagation exist in
the cohesive zone models. Also, the lattice differs (from cohesive zone models)
by a regular structure, the same in the crack path and in the bulk of the material.
This creates no artificial restrictions on the crack-speed-dependent distribution of
dissipation caused by viscosity.

The dynamic viscoelastic lattice model reduces to the requisite quasi-static limit
and homogeneous viscoelastic material behavior. The first limit coincides with
the static state. However, during slow crack growth, radiation still occurs because
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of discrete bond-rupture events. In the homogeneous material case, an important
boundary-layer-type dependence, which is revealed by the lattice model in the case
of pronounced viscosity, is lost as follows: in a viscoelastic lattice, the rapid rise in
resistance for early crack acceleration allows slow cracks to grow stably. Formally,
this phenomenon manifests itself in a very rapid rise in the value ofVα = vα/a

due solely to a small increase of the normalized crack speedV = v/c from v = 0
(if the parameterCα is large). In homogeneous materials,Vα = ∞ for anyv > 0
becausea = 0, and this physically important behavior cannot be modeled.

In contrast to an elastic lattice, the high-frequency waves cannot propagate as
oscillations of the lattice structure in the viscoelastic lattice from infinity because
of dissipation due to viscosity. The only structure-associated waves which exist are
excited by the propagating crack. For moderate viscosity, the amount of energy
carried away from the crack tip by these waves decreases with an increase of the
crack speed (for slow crack speeds). In this case, slow crack growth is not possible.
With increasing viscosity, that is, for an increase ofCα given thatφ is low, the
resistance by viscosity increases and the role of the radiation resistance becomes
less important. The latter observation, however, does not concern the zero-speed
limit where the influence of high frequency wave radiation on the resistance to
crack propagation remains important.

The solutions derived in this paper give the relations between the global (far-
field) and local energy release rates, and relations between the far-field energy
release rate and the breaking bond strain. These crack-speed and viscosity-
dependent relations can be used for the crack propagation determination under
given conditions and fracture criterion. However, in the formulation adopted in this
paper, the crack speed is prescribed and the energy release ratios are considered
under a given speed. In general, to come to a conclusion whether a steady-state
solution exists, and if it does, at what crack speed one has to invoke a material-
dependent fracture criterion and to trace whether it is satisfied by the solution (over
each successive time-interval from one periodic bond-fracture to the next). The
analysis shows, in particular, that for large viscosity the limiting strain considered
is maximal at the end of each such time-interval. Were one to use the limiting
strain criterion as a fracture criterion, the solutions derived in this paper could be
used to determine the associated crack speed. This observation applies equally to
slow stable crack growth.

Note that the lattice model can also be looked upon as a finite-element ap-
proximation of a continuous material. Numerical simulations of this type of
lattice model, including various nonlinear extensions, requires no additional finite-
element approximation. On the other hand, the analytical solutions derived for the
infinite lattice and lattice strip, and phenomena revealed by this model, can serve
as benchmark solutions for finite-element analyses.

Finally, the solutions derived are expressed in terms of nondimensional para-
metersCα = αc/a, Vα = αv/a andφ. This suggests a structure-associated size
effect. Indeed, for given relaxation and creep times and the crack speed, the size
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of the parametersCα andVα is determined by the sizea. Thus, under the same
conditions, the viscosity parameters governing fracture increase with a decrease in
the structure size.
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Appendix

1. CAUSALITY, STABILITY AND PASSIVITY

Consider a viscoelastic stress-strain relation

σ (t) = Et(t) ∗ ε(t), (128)

where the symbol∗means the convolution

Et(t) ∗ ε(t) =
t∫

−∞
Et(t − τ)ε(τ) dτ (129)

andEt(t) is a generalized function. In the convolution integral it is taken into ac-
count that a future strain does not influence the current stress and henceEt(t) = 0
for t < 0. This is thecausality principle.

If the relation (128) is valid for anyt this equality can be also expressed in terms
of the Fourier transforms:

σF (k) = E(k)εF (k), E(k) = EF
t (k), (130)

where the Fourier transformation is defined by the relation as

σF (k) =
∞∫
−∞

σ (t) eikt dt. (131)

Along with the causality principle, the viscoelastic modulus should obey the
requirements ofstability andpassivityif the material is really stable and passive.
The first requirement means that stress does not increase exponentially under a
fixed strain and vice versa. Hence in the Fourier representation, singular and zero
points ofE are placed in the upper half-plane ofk. Note that in the case of the
Fourier transformation overη, the Fourier transform,E has no such points in the
lower half-plane, that isE = E−.
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The feature of passivity means that work cannot be negative, that is

A =
t∫

0

σ (t)ε̇ dt ≥ 0

(
ε̇ = dε

dt

)
. (132)

Consider a closed path of strain:ε = 0 for t < 0 andt > T <∞. In this case, the
Parseval equality can be used in the form

A =
T∫

0

σ (t)ε̇ dt = 1

2π

∞∫
−∞

E(k)εF (k)(ε̇)F (k) dk

= 1

2π

∞∫
−∞

E(k)ik|εF (k)|2 dk = − 1

π

0∫
−∞

Im E(k)|εF (k)|2k dk

= − 1

π

∞∫
0

Im E(k)|εF (k)|2k dk. (133)

It follows from this that for a passive material

Im kE(k) ≤ 0. (134)

Note that this inequality is changed for the opposite one in the case of the Four-
ier transformation overη. For the above-considered constitutive equation (1),
Equation (134) leads to the inequalityα ≥ β.

2. GENERALIZED STANDARD MODEL

Consider a more general one-dimensional force-strain relation for a viscoelastic
bond:∏

n

(
1+ βn

d

dt

)
σ =

∏
n

(
1+ αn

d

dt

)
ε, 1≤ n ≤ n∗. (135)

Here, note the restriction that no two values amongαn, βn are the same. For a
steady-state problem in which the considered functions depend onη only, this
relation takes the form∏

n

(
1− Vβn

d

dη

)
σ =

∏
n

(
1− Vαn

d

dη

)
ε. (136)

Using the right-sided Fourier transformation it can be found that

σ+
∏
n

(1+ ikVβn)− 2u+
∏
n

(1+ ikVαn) =
∑

n

ank
n−1, (137)
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where the polynomial of the powern∗ − 1 in the right part arises as a result of this
transformation; it depends on values ofσ (+0) andu(0) and their derivatives up to
the ordern∗ − 1. The constantsan are defined by the requirement thatσ+ andu+
do not contain poles and zeros in the upper half-plane ofk, i.e., they really can be
marked by the subscript+. These conditions are satisfied by the expressions

σ+(k) = 2

∏
n(1+ ikVαn)∏
n(1+ ikVβn)

u+(k)

− 2
n∗∑

m=1

∏
n(1− αn/βm)u+[i/Vβm]

(1+ ikVβm)
∏

n6=m(1− βn/βm)
,

u+(k) =
∏

n(1+ ikVβn)

2
∏

n(1+ ikVαn)
σ+(k)

−
n∗∑

m=1

∏
n(1− βn/αm)σ+[i/Vαm]

2(1+ ikVαm)
∏

n6=m(1− αn/αm)
. (138)

In the simplest casen∗ = 1,
∏

n6=m = 1, and the relation in (11) is obtained.

3. CONTINUOUS AND DISCRETEFOURIER TRANSFORMS

Consider a functionf (x−vt), x = an, n = 0,±1, . . .. The Fourier transformation
over(−vt/a) leads to

f (−vt/a)(k)

=
∞∫
−∞

f (x − vt) eikη−ikn d(−vt/a) = e−iknf F (k), (139)

where

f F (k) =
∞∫
−∞

f (η) eikη dη, η = (x − vt)/a. (140)

The discrete Fourier transform of (139) is

g(k, q) =
∞∑

n=−∞
f (−vt/a) eiqn = 2πf F (k)δ(k − q), (141)

whereδ is the Dirac delta-function.
The discrete Fourier transform off follows from using the inverse transforma-

tion of (141) overk:

f n(q) = 1

2π

∞∫
−∞

g(k, q) eikvt/a dk = f F (q) eiqvt/a. (142)
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In the problems considered in this paper, the discrete Fourier transform is needed
for t = 0, when the limiting stress and strain are achieved in the bond with the
coordinatex = 0. For this time the discrete and continuous transformations give
us the same result:

f n(q) = f F (q). (143)

4. CAUSALITY PRINCIPLE FORSTEADY-STATE SOLUTIONS

A steady-state solution for a domain unbounded in thex-direction can be non-
unique due to the existence of one or a set of inherent solutions as free waves which
can be considered as produced by sources at infinity. The existence of such waves
reflects itself by singular and zero points on the realk-axis of the Fourier transforms
of the steady-state solutions. If such sources are not allowed by the problem for-
mulation, they must be excluded from the solution. This can be achieved in various
ways, in particular by the use of a rule based on the causality principle. Under this
principle, the steady-state solution is considered as a limit (timet → ∞) of the
solution to the corresponding transient problem with zero initial conditions.

Consider the inverse Laplace (with respect to timet) and Fourier (with respect
to the coordinatex) transformations, and let it beuLF (s, k), of a functionu(t, x)

u(t, x) = 1

2π

1

2πi

∞∫
−∞

i∞+0∫
−i∞+0

uLF (s, k) est−ikx ds dk. (144)

The solution is required to become steady-state in the coordinate system moving
along thex-coordinate with velocityv, that is in the coordinateη = x − vt .
Substitutex = η + vt in the representation (144), giving

u(t, x) = w(t, η)

= 1

2π

1

2πi

∞∫
−∞

i∞+0∫
−i∞+0

uLF (s, k) e(s−ikv)t−ikη ds dk. (145)

Now denotes = ikv + p, wherek is assumed to be real, Rep = +0:

w(t, η) = 1

2π

1

2πi

∞∫
−∞

i∞+0∫
−i∞+0

uLF (p + ikv, k) ept−ikη dp dk. (146)

The last equality is the inverse Laplace transform (with respect to the explicitly
written t) and Fourier transform (with respect toη) transformations ofwLF(p, k) =
uLF (p + ikv, k) of the original w(t, η). From this it follows that the double
transformation in the moving coordinate system is

wLFη(p, k) = uLF (p + ikv, k). (147)
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It is assumed that a limit of the functionw(t, η) exists whent →∞, η = const.
The well-known limiting theorem states:

If a limit of a functionf (t) with t →∞ exists, it is

lim
t→∞f (t) = lim

p→0
pf L(p), (148)

wheref L(p) is the Laplace transform off (t). For our problem this means that

lim
t→∞wFη(t, k) = lim

p→+0
puLF (p + ikv, k). (149)

However, if a nonzero limit exists, its Laplace transform contains the multiplier
1/p as for each constant original. Thus the causality-principle-based rule states:

For a steady-state solution, in the Fourier transform corresponding to the moving
coordinate system, each productikv must be supplemented by the term+0 which
means the limit from the right.

This makes the solution uniquely defined. Mathematically, it makes the realk-axis
free of the singular and zero points.
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