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Nonlinear waves in an inextensible flexible helix 
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Abstract 

The complete analytical solution of the governing nonlinear vector equations is found which describes periodic and solitary 

propagating-rotating waves in an initially helical fiber. A detailed description of various types of these waves is given. 
The solitary wave velocity is found to be proportional to the square root of the amplitude of the internal force, and the 
effective wave length is shown to be independent of the amplitude. The essential influence of the rigid body rotation of 
the helix on the wave shape is shown. Axial and angular momenta are determined as well. Copyright 0 1998 Elsevier 
Science B.V. 

1. Introduction and governing equations 

We consider an infinite inextensible, flexible fiber of constant mass density p per unit length whose equation of 
motion and inextensibility condition are respectively 
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Here F is a nonnegative internal tension force, R is the position vector, S is the coordinate measured along the fiber 
and f is time. The nonlinear vector equations governing the dynamics of the fiber are of particular interest in the case 
of the helix. In this case, irrespective of the initial helix geometry or amplitude of displacements, these equations 

admit complete and general, traveling-wave, analytical solutions as periodic or solitary waves which possess axial 
and angular momenta. ’ 

In 121, Eqs. (1) and (2) were resolved analytically for the particular case of a solitary wave in a helix which is 
stationary at infinity. In the solution, the constants of integration were chosen appropriately to maintain the initial 
shape of the helix at infinity in front of the wave. We now remove this requirement and construct the general traveling 
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’ These waves are stationary in a coordinate system uniformly moving along and rotating around the helix axis 
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wave solution which describes both a periodic wave as well as a solitary wave. Moreover, in the case of the solitary 
wave, the more general condition at infinity includes possible rigid body rotation of the helix. 

Since there exists no strain energy in the system under consideration, geometrical nonlinearity is essential for 
the wave phenomena. Waveguides in which geometrical nonlinearity is significant were considered in a number of 

works. Gorbacheva and Ostrovsky [3] investigated plane transverse motions of an initially straight atomic chain 
(a mass-spring system). Spatial solitary waves in similar systems were considered by Cadet [4] and Rosenau [5]. 

There is a large body of works devoted to the nonlinear dynamics of inextensible fibers and elastic strings. As a 

result of mathematical difficulties, most of them are based on approximate methods to take into account the coupled 
transversal and longitudinal motions. The study of the dynamic behavior of fibers based on genuinely nonlinear 
Eq. (1) was started by Kolodner [6] and continued by many authors (note works by Reeken [7] and Antman and 
Reeken [S]). The equation for the large vibration of strings was studied in [9-l I]. Some solutions of Eq. (1) were 

found by Rosenau and Rubin [12] for an extensible fiber in the cases of the time-independent and coordinate- 
independent tension. For an extended reference and historical notes see, for example, the book by Amman [ 131. 

Solitary waves in an extensible string of an arbitrary nonlinear elastic material were described in [ 141. It was shown 

that neglecting extensibility leads to a low-velocity asymptote (or low-energy) of the solution for the corresponding 
extensible fiber. Different types of solitary waves in the helical string rotating as a rigid body were later considered 

in [ 151. 
It may be mentioned that the model of the inextensible flexible helical fiber is relevant to a wide variety of 

fields: from the modeling of macromolecules such as DNA to reinforcements of composite materials, textile yarn 
manufacturing processes, modeling of mechanical properties of helical strands [ 161 and deployable antennae for 

satellite applications [ 171. Moreover, such systems can be used as an energy absorber under dynamic extension [ 181. 
Note that the deployable systems may also serve as demonstrations of the solitary waves. The helical inextensible 
fiber devoid of bending stiffness, considered in the present work, is the simplest system of this kind. Such a model 
corresponds to a long-wave approximation, where the radius of curvature of the fiber as well as the wave length is 

much larger than the cross-sectional dimensions of the fiber. 
In addition to [2], some results related to the present problem were presented in the works by the authors [ 19-211. 

We represent the position vector R(S, t) as the sum of a longitudinal vector R, (S, l), where x is the axis of the 
helix (associated with the unit vector k,) and a vector R(S, t) lying in the cross-section of the helix [2]. Introducing 

the nondimensional quantities 

rx = &/Ro, r = R/Ro, s = SIRo, f = F/d t = vt/Ro, (3) 

where u is the wave velocity along the fiber, and Ro is the radius of the undeformed helix, the vectors r, and r are 
represented as follows (Fig. 1): 

rx(s, r) = rx(s, r)k.X = [scosy + u(6)lk, r(s, s) = A(t) eihsfiws, (40) 

k = sin y, {=s--r. (4c,d) 

Here y E (0, n/2] is the angle between the fiber and the x-axis in the undeformed helix; w is a real parameter 
relating to the angular velocity of the helix; A(c) and u(c) are unspecified functions. The rotating vector r(s, 6) 
is defined in a complex variable plane which coincides with the cross-section of the helix, and A(c) is a complex 
function. 2 Note that the complex representation of the rotating vector r, Eq. (4b), was shown in [5] to permit a 
traveling wave solution for the corresponding plane problem, i.e. an infinite ‘helix’ with zero pitch. 

’ The representation (4) differs from that in [2] by the parameter o which is introduced in Eq. (4b) to take explicitly into account the 

possibility of rotation of the helix as a rigid body. This representation corresponds physically to an observer attached to an orthogonal 

right-hand triad natural to the undeformed helix which moves along the fiber with a speed u and an associated angular velocity 52 about 

the x-axis, Q = (A. + w)u/Rn. 
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Fig. 1. Representation of the position vector. 

Substituting (4) into Eq. (1) then leads to 

[(cos y + u’)f]’ = u”, (1 - f)r” - f’r’ - a2r - 2iar’ = 0, (5a,b) 

with the inextensibility condition 

(T’]? + ];, ]2 = 1. (5c) 

Here and below, CJ = A. + w; primes and dots denote derivatives with respect to the nondimensional coordinate, s 
and time r, respectively. 

Integration of the system (5) with four unknowns, u(t), f(t), Ir(t)] and arg[r(c)], yields a general solution which 
involves seven scalar constants of integration. Using the same integration procedure as was applied in [ 21, we obtain 

sequentially the following relations: the expression for u’ follows from Eq. (5a); namely 

where Ct is a constant of integration. From inextensibility condition (5~). we have the expression 

c: 
VI2 = I - 1r;12 = 1 _ (, _ f)2, 

which, together with Eq. (5b), yields the relation between the nondimensional tension force, ,f’, and the helix radius, 
]r(s. s)]: 

.f” = -$a2( I#)‘. f = ;a2 (Cz - lrI2) (L # -w). (8a,b) 

where C:! > 0 is a constant of integration. Note that the constant Ct does not appear in this relation but appears 
only in the expression for u’. 
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It follows from Eq. (5b) that the case 0 = 0, J # const 3 corresponds to the D’Alembert solution R = 
R(S - ut), f = 1, described in [2], as a uniform flow of the fiber material along an arbitrary curve under the 
condition of a constant internal force. 4 Hereafter the parameter ~7 is taken to be nonzero. 

Substituting Eq. (8b) back into Eq. (5b) and rearranging leads to 

Y” - ig’ [(C2 - (r12)r’]’ - cr2r - 2iar’ = 0. (9) 

In solving this 2D vector equation, we choose to represent the vector r by means of the specific complex 
representation 

A(l) = r(~)eiH(o, r = r(~)e’@(“~‘), 4J(4, s) = e(t) + As + ox, (1OaJ-w) 

where r(t) and f3(.$) are real functions. Substituting Eq. (10) into Eq. (9) and separating the real and imaginary 
parts, we obtain the equations 

[I - $72(C2 - P)J[r” - (@‘)%I + &/)2 - U2r + 2a@‘r = 0, (lla) 

[1 - $?(C2 - r2)J(f$‘r + 2&i) + &V@ - 2ar’ = 0, (1 lb) 

which, together with expression (8b), govern the traveling waves in the helix. 
In Section 2, the general traveling-wave solution which contains seven arbitrary, scalar constants of integration 

is derived. In Sections 3 and 4, we analyze two different types of waves: the first corresponds to the case when the 

fiber crosses the axis of the helix; in the second, the fiber does not cross the axis. Integral properties of the solution 
are considered in Section 5. 

2. General traveling-wave solution 

When the initial shape of the helix remains constant (r’ = 0, 4’ = h, r # 0), Eq. (1 lb) is satisfied automatically 

and Eq. (1 la), which takes the form 

h2 f - w2 = 0, (1 lc) 

describes the rotation of the undeformed helix with the nondimensional angular velocity w = fhfl. However, 
Eqs. (1 la,b) also lead to some wave solutions. To this end, we first consider Eq. (1 lb) which is linear and of first 
order in 4’. Eq. (1 lb) admits the solution 

@‘= fJ ; a2G 
1-f 2r2(1 -f)’ 

h”f+w e’=+‘-h= ~ 
o2 c3 

1-f + 2r2(1 -f)’ 

Wa) 

(12b) 

where C3 = const, and f is defined by Eq. (8b). Substitution of expression (12a) into Eq. (11 a) yields a second-order 
equation with respect to r; namely 

r” + 02r 
(r-f)2 - 1 

1 - (a2/2) (C;? - r2) 

1 

+ (72r [ 1 - (a2/2) (C2 - r2)]2 - 

04 c2 3 

4r3 [l - (a2/2) (C2 - r2)]2 
= 0. (13) 

’ The case i = const corresponds to a rectilinear fiber which, being inextensible, cannot be a waveguide. 

4 The rotation of the helix as a rigid body with the nondimensional angular velocity w = -A corresponds to this solution since the 

constant axial velocity, uX = --u cos y. can always be added. 
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This equation can be rewritten as a first-order equation with respect to (r’)2 - 1 whose solution includes the next 
constant of integration, C4: 

,2 
r’=*- J r2(C2 - r2)2 - r2C4 - Ci 

2 r [I - (02/2)(C, - r2)] . 
(14) 

The choice of the sign in Eq. (14) is discussed below where the solutions for zero and nonzero minimal values of r* 

are considered. Before integrating this equation, we first consider some relations concerned with the determination 
of the constants. From representation (lo), it follows that 

(r/l2 = (r’)2 + ~~(4’)~. (15) 

and Eqs. (12a) and ( 14) yield 

Ii12 = 1 - 
1 - a2C2 + a414 c4 - 03 c3 

(l-f)2 . 

On the other hand, noting that Iii2 is defined by Eq. (7), we find the expression for Cl. namely 

(16) 

Cl = *J1 - 02c* + (a4/4)C4 - 03 c3. 

Since the constant Ci is real (see Eq. (6)), 

c; > 0. 

Then from the inextensibility condition, Eq. (5c), we have ]#I2 5 1, and therefore, from Eq. (7) 

(17) 

(18a) 

(152 5 ’ (‘8b) 

Further, from Eqs. (6) and (18b), it follows that -( 1 + cos y) I U’ I 1 - cos y. The choice of the sign in Eq. (17) 
has a geometrical meaning and depends on the correspondence of the positive directions of the coordinates s and 
x. Note that if x increases with S, r: = Cl/( 1 - f) 1 0. Hereafter, we assume that 1.1 > 0 and, consequently, 

sgn(C1) = sgn( 1 - f). 

We observe that in the case of the equality in (18b), If I = 0 (see Eq. (7)). In this case, Ifx(t$)l = 1 and the helix 
degenerates to a straight line. In the other limiting case when Cl = 0, we have I”,(c) = 0 and Ir’l = 1 for all 6. 
Physically this corresponds to the fiber as a plane curve with x =const. 

Now integrating differential equations (14), (6) and (12a), and noting that for the functions r(c), u (6) and H (e ). 
the equalities are valid as a/as = a/at = (a/ar)(dr/dc), we obtain the general solution of the system (Eq. (5)) in 
a form which is valid for any interval where t(r) is a single-valued function: 

1 - (a2/2)(C2 - r*) 
rdr+Cs. 

VI r2(C2 - r2)2 - r2 C4 - Ci 

r 

t4(c$)=-<cosy * 5 J, Cl 
r dr + Cg. 

f-0 
r2(C* - r2)2 - r2 C4 - Cz 

I 

~(0 = f 
J, 

u r2 (C2 - r2) + C3 
?+c7, 

r0 
r2(C2 - r2)2 - r2 C4 - C2 r 3 

(19a) 

(19b) 

(19c) 
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or, alternatively 

r 

e(() = l $ /J 2r2 + aC3 dr 
- - ?4 + Cl. 

r0 
r*(C2 - r2)2 - r2 C4 - C2 r 3 

(194 

where rg is the minimal nonnegative value of r; the internal force f(r) is defined by Eq. (8) and the angle @(s, T) 

can be obtained using Eq. (1 Oc). We observe that the constants C6 and C7 correspond respectively to the axial 
displacement and rotation of the helix as a rigid body and hence are not essential for our consideration. Nevertheless 

we save these constants in order to satisfy the conditions of the undeformed helix at infinity in front of the solitary 
wave. Letting the constant C5 = c(rg) correspond to the origin of the c-coordinate position, we choose the 

coordinate system such that C5 = 0 and r = rg(< = 0). In effect, the resulting solution then depends on the three 

scalar constants C2, C3, C4 and also on the parameter 0. Our goal is to analyze this general solution for any possible 
combination of the constants. 

With this in mind, it is convenient to separate the solutions into two types: the first one, rg = 0, corresponds to 

the case where the fiber crosses the x-axis at the point 6 = 0, and the second type corresponds to a nonzero minimal 

radius of the deformed helix. 

3. The case ro = 0 (the fiber crosses the axis of the helix) 

3.1. General description 

Noting, that r’ and 4’ have been introduced as real values, it follows from Eq. (12) that C3 is real. Further, it 

follows from Eq. (14) that r’ would be imaginary for small r if C3 # 0. Hence solutions for which r-0 = 0 are 
described by Eq. (19a,b,c) under the condition C3 = 0. (Moreover, one observes that in the case, ru = 0, the 
integrand in Eq. (19~) is nonintegrable if C3 # 0.) 

It follows from (14) that at the point r = 6 = 0, the derivative r’ has a nonzero value if Cz # C4: 

d c; - c4 
[r’(o)]2 = 4 [l _ @2/2)C*]2. 

Thus, in this case, the fiber crosses the axis of the helix at the point c = 0. (The case Cz = C4 is considered below.) 
We find it convenient to define r = Ir)for 4 > 0 and r = -11rl for c 5 0. As a result of this definition, we take the 
sign “+” in Eqs. (14) and (19) for f < 1 and the sign “-” for f > 1. In accordance with Eqs. (14), (17), (8b) and 
(6), we obtain 

o2 J 
r’=*- 

(C2 - r2)* - C4 a2 J(C2 -r*)* - C4 

2 1 - (a2/2)(C2 - r*) = 5 ll-fl ’ 
(21) 

u’(r) = - COS y + 
Jl - a* c* + (a4/4)C4 

l-f . 
(22) 

Taking into account Eqs. (20) and (21) one has 

C,2 > C4, (C2 - r2)2 - C4 10. 

For C3 = 0, expression (19a) can then be reduced to the form 

(23a,b) 

$=*j r 1 - (a2/2)(C2 - r*) dr 

0 
J(rF - r2)(rz - r*) ’ 

(24) 
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Fig. 2. Phase portrait for Eq. (13) with C3 = 0: (a) f < 1; (b) f > 1, Observe that this phase portrait is similar in appearance to that of a 

non-linear oscillator. 

where 

r: = c2 + Jc4. i-22 = Cz _ 4% Wa,b) 

are the roots of the equation 

(C2 - r2)2 - C4 = 0. (25c) 

The phase portrait of Eq. (14) with C3 = 0 is shown in Figs. 2(a) and (b). We observe that the ordinary differential 

equation (I 3) leads to periodic waves, solitary waves and increasing solutions corresponding to C4 > 0, C4 = 0 

and C4 < 0 respectively. 5 The case C4 < 0 corresponds physically to a negative tension force and we exclude it 
from consideration. From the inextensibility condition and from Eq. (21), it follows that the solitary wave solution 
(C4 = 0) satisfies the following condition: 

Finally, if C4 > 0, Eq. (2%) has two real roots, and the expression under the square root in Eq. (21) is nonnegative 
in the relevant ranges 0 5 r 5 t-2 and rt 5 r ( CO. We exclude the case r > t-1 from our consideration below 

since it corresponds to an unbounded solution with a negative internal force. We therefore need consider only the 
remaining relevant case, C4 > 0, 0 5 r 5 t-2. 

3.2. Periodic wave 

In this case, the phase curve is closed; it corresponds to a periodic solution (see Figs. 2(a) and (b)), which can be 

expressed in terms of elliptic integrals. The relations between r and C; follow from Eq. (24) as 

t-1 q 6 = f 1 - c (C2 - rf) 1 F(cp, k) f g r:E(cp, k), (27) 

’ Note, however, that Eq. (I) is a vector equation, and r is a scalar. Therefore the phase portrait of Eq. (I 3) does not give the complete 

description of the movement of the system. 
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from which 

r = 4~2 sn 
a2 6 f rl WV, k) 

r-1 - 
I 2 1 + (A2/2)2/c1; ’ 

(28) 

where 

.‘7? 

xl2 

F(cp, k) = 
s 

dq 
K(k) = 

1 - k* sin* cp s a J-S&> 

cp xi* 

E(p, k) = 
s 

,/xdp, E(k) = 1 Jxdq. 

0 0 

Here F(cp, k) andE(cp, k) are elliptic integrals in Legendre’s normal form of the first and the second kind, respectively; 

sn is Jacobi’s elliptic sine; k = ?-2/q 5 1 and q = arcsin(r/rz) are, respectively, the modulus and the argument of 
the elliptic integrals. 

It follows from expressions (8b) and (25) that the constants C2 and & correspond, respectively, to maximum 

and minimum values of the internal force, f; namely 

.f = fmin = g Jc4 (r = r2), f = fmax = G C2 (r = 0). (29) 

In the limiting case Ci = Cd, we note that for ,f > 0, r’ is real only if r = 0 for all 4 and hence the helix degenerates 

to a straight fiber. 
Having obtained relation (8b) between r and f, the solution (28) can be rewritten alternatively in terms of the 

internal force. Taking the square of both parts of Eq. (28), adding -C2 and multiplying by a*/2 we obtain 

17 = Vmax cn* dfmin + ~ ,2 1~~16 * Wfmin + Vmax/2Rqo, k) 
max 

l + fmin 
(30) 

where n = f - fmin is the current amplitude of the wave, nmax = fmax - fmin is the maximal amplitude and cn 

denotes Jacobi’s elliptic cosine. 

Let L be the wave length, i.e. r(c) = r(c + L). We observe that the functions r’(r), @l(r), u’(r) and f(r) are 
also periodic since they depend only on r. Noting that the period of the elliptic function is 4K(k) and that of the 
square of the elliptic function is 2K(k), Eq. (30) yields a relation for the wave length: 

YI $ g = f 1 - $ (C2 - r:) K(k) F $ rFE(k), 
I 

which, using Eqs. (25) and (29), can be expressed as 

IDI L * I + fmin -__= 

2/22 llfmin + fmax 
K(k) T v’taE(k). 

(314 

(31b) 

Thus, we have obtained a two-parameter set of solutions (noting that the three parameters, fmax, fhn and the wave 
length L, are connected by Eq. (3 lb)). 

Having set C3 = 0 (since the case ro = 0 is under consideration) and using Eqs. (19b,c), we obtain expressions 
for the axial displacement and angle of rotation: 

-Jz J1 - 2fmax + .f& 

u(6) = -6 cosy + m 
Jfmin + fmax 

F(vo, k) + c6, (32) 
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@(Cl = k 
2/2 

zlfmin + .fmax 
F(cp, k) - A[ + C7. (33a) 

4(s, t) = e(e) + hs + Wt = f 
Jz 

Jfmax + fmin 
F((o, k) + cr. (33b) 

Note that the axial displacement u(c, r) as well as the angle of rotation 8 (t9 r) can be expressed as a sum of periodic 

and linear functions of c. This means that each passing wave leads to a constant shift in the axial displacement and 
rotation and gives rise to constant components of the linear and angular velocities. 

We can now draw some conclusions concerning the limits of the internal force. From expression (32) we observe 

that the limits, &in and fmax, cannot be chosen arbitrarily since these values must satisfy the inequality 

.fmax I ;(I + .fii,) or fmax - fmin 5 $<I - .fmin)‘. (34a,b) 

Hence, any one of the following relations can be valid: 

.fmin < .&ax < I. 1 < .fmin < &ax. .&in = fmax = 1. (34c.d,e) 

In the latter, degenerate case, the internal force is invariable: f z 1, and it is not a wave solution. Upon setting 

Eli” = u.~~,,,, where 0 5 a 5 1, we then have the following sub-classes of the solution: 

where ,j$,‘,‘, and .fzA correspond to the equalities in Eqs. (34a,b). 

(a) (b) 

(35a) 

(35b) 

Fig. 3. Shape of the deformed helix with rg = 0 at any given time for 4 = sin(n/l8), a = 0.25: (a) .f < I, .fmax = a’/2: (b) .f > 1, 

,fmax = 200f,$x. The fiber is shown compressed along the x-axis. The lower picture represents the shape of the fiber viewed from a 

point lying on the x-axis. 
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Fig. 4. Components of the periodic solution for rg = 0: (a) radius of the helix r(<); (b) internal force f(c); (c) axial displacement u(t); 

(d) angle of rotation e(6). 

The deformed shape of a helix with y = n/18, a = 0.25 due to a propagating periodic wave is presented in 
Figs. 3(a) and (b) for the cases f < 1 and f > 1, respectively. We observe that for f < 1, @+ - 4- > n/2 where 
$+ and $- correspond to the maximal and minimal values of r respectively; for the case f > 1, g5+ - c#_ < 7r/2. 

Figures of r(c), f(6), u(c) and 13(t) are shown in Figs. 4 (a)-(d), respectively, for values C2 = 1, a = 0.25 and 
y = n/6. 

3.3. Solitary wave 

We first observe that the wave length, given by Eq. (3 1 b), depends on the ratio k = r-Jr-1 and hence, via Eq. (25a,b), 
on the constant Cd. The limiting case, C4 = 0, corresponds to the infinite wavelength, L = m. In this case, as 
follows from Eqs. (8b), (25), (26), (29) and (34), 

rl = r-2 = C2. k = 1, fmin = 0, fmm = ia2C2 5 i. (36a-d) 
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Keeping the definition lRl = RO and 8 = 0 for the undeformed helix, [ = i-00, we find C2 = I. w = 0 (H = 

h), C7 = -h. Then, setting C6 = - cos y we also obtain the required equality, u = 0 for the axial displacement at 
6 = fco. As a result, we have the relations which describe a solitary wave: 

r=tanh[c(<+r)], U = (r - 1)cosy. (3’7a,b) 

h2 
0 = h(r - 1). f’ = - (1 - r2) = - sech’ 

2 
; [;(B++ (37c,d) 

This solution reveals that the effective wavelength is independent of the amplitude (and velocity) and depends 

only on the parameter k [2,20]. Note that this result is a consequence of the inextensibility of the fiber. As is shown 
in [ 141, the model of an inextensible fiber is the low-velocity asymptote of an elastic string (the wave velocity is 

far less then the local sound velocity in the string material). In this case, the geometrical nonlinearity due to the 
flexibility of the fiber plays a decisive role in the formation of the wave. 

We also note from the above derived solution, that in the case of rigid body rotation of the helix, solitary waves 

do not exist for cases in which the fiber crosses the helix axis. 

3.4. Asymptotic solutions 

It was shown in (201 that in the case k + 0, Eqs. (36) and (37) yield the asymptotic expression .f’ - 

(h2/2) sech2[(h2/2)t]. Here we consider an asymptotic solution which corresponds to a periodic wave of a small 
amplitude of the force variation: nmax /f&,x = E < 1. Note that this condition is the same as h -+ 0 since the limit, 

E = 0, corresponds to the straight fiber. Noting that r2 - G, for small E we have rl - a. k - m. 

F(cp. k) = E(cp. k) - arcsin(r/rz); the solution can then be expressed in terms of trigonometric functions: 

(38a,b) 

where 

. 

or, in dimensional form (see Eq. (3)) 

(39a) 

4 
-ZZ 

Ro 
(39b) 

For this sinusoidal wave, Eq. (39) yields the dispersion relation where q/R0 corresponds to a wave number 1221. 
Note that the amplitude nmax of the force does not appear in the dispersion relation. From Eq. (34b,c), it follows 
that .fmax 5 I - & or .fmax > 1 + 6 and hence q I 2 1~ I/&. 

4. The case ro # 0 (the fiber does not cross the axis of the helix) 

4. I. General considerations 

In this case, the solution is described by Eqs. (8) and (19) with C3 # 0. The solution exists when the expression 
under the square root in Eq. (14) is positive; hence the type of solution is defined by the character of the roots of 
the equation below, hereafter denoted by ri 5 rz 5 rf, 

r6 - 2C2r4 + (C: - C4)r2 - Ci = 0. (404 
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which can be written in the form 

B(1 - #Q2 = US + b2, 

where 

(40b) 

B = r2/C2, a = CL&, b = C&2. (4Oc) 

The roots r3 and r2, if they exist, define the boundaries of the range where the left-hand part of E$. (40a) is positive, 
and correspond to the minimal and maximal radii, respectively. The left-hand side of Eq. (40b), with roots /I = 0 

and /I = 1, does not depend on the constants a and b, while the right-hand side is the straight line. We note that the 
roots of Eq. (40a,b) do not depend on the sign of C3 which in principle can be negative. Note also that the periodic 

solution may be obtained both for C4 > 0 and for C4 < 0 for C3 # 0 ( as noted in Section 4.1, if C3 = 0 the 
bounded solution exists only for C4 2 0). The solitary wave solution exists only for C4 < 0. The phase portrait for 

the case f < 1 is shown in Fig. 5(a), and for the case f > 1 in Fig. 5(b). 
Similarly, as in the case C3 = 0, the constants C2, C3, C4 cannot be prescribed arbitrarily but must satisfy 

conditions (18a,b). Condition (18b) is satisfied automatically if rs < r < r2. From condition (18a), we have, using 

the notations of Eq. (4Oc): 

.a4 - 202 + 1 = sgn(crC3)hjbJa3, O!= JE. (4 lab) 

Eq. (4 1 a) has one or two positive roots, (II (I) and (Y(~). The number of roots depends on the relationship between the 
parameters a, b and the sign of the product aC3. In the case u 5 0, only one positive root exists. In the case a > 0, 

Eq. (41a) has two positive roots and the internal force can be unbounded. The possible combinations are shown on 
Fig. 6. From Eqs. (41a,b) and (8b), we obtain the limiting values of the internal force: 

f&[u, b, sgn(aCs)] = ~(1) ]a, b, sgnWd1[1 - ~%(a, b)l, (424 

f,$A[u, b, sgn(aC3)] = ac2) ]a, b, sgn(aCdlU - h(a, 611. (42b) 

Thus, the internal force must satisfy condition (35a) or (35b) according to the number of roots of Eq. (41a). Note 

that in the case of the solitary wave, when a < 0, Eq. (41a) has only one positive root and o(l) < 1 (see Fig. 6); 
therefore, in this case, f < 1. As noted above, when the force takes the limiting values (42a,b), the helix degenerates 
to a plane curve. 

Fig. 5. Phase portrait for Eq. (13) with C3 # 0: (a) f < 1; the separatrix corresponds to the solitary wave solution, and the closed curves 
correspond to periodic solution; (b) f > 1; observe that only a periodic wave solution exists. 
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-Y 
2 

Fig. 6. Representation of E!AJ. (41a). Observe that in the caSe a -c 0, aC3 > 0 only one positive root exists. In the case aC3 < 0 the 

internal force can be unbounded. 

4.2. Periodic wave 

Substituting r 2 = ri + (r-22 - rf) sin p, Eq. (19a) is reduced to a transcendental equation relative to r = r(6): 

cp = arcsin 
r2 - i-32 

K-1 
2 2’ 

k2 _ ‘22 - ‘:. 

r2 - ‘3 rf - ri 

(4% 

(43b) 

(43c,d) 

In contrast to the case C3 = 0, the solution depends on three constants and cannot be expressed only in terms of 
the limits of the internal force. It follows from Eq. (40a) that 

C2=ikrf, C,2-- Cb=kS;rzrf, C,2 = i_I rf, C3 = kfirj, 

i=l i=l jfi i=l i=l 

and hence, from Eqs. (43b) and (8), we obtain (compare with Eq. (30)) 

IQ I 6 f 2~ Wvo, k) 

1 + &in - (a2/2)r,2 1 ’ 

where 

‘I=f-fmin; %nax=fmax- fain; /* = Jfmin + rImax/ - (a2/4k,2. 

From Eq. (43a), the period of the wave can be expressed as a function of fmax, fmin and q: 

,,I$=* 1 + ftin - (a2/2)r32 K(k) ~ 2pE(k) 

w 

(4) 

(45) 



130 V Krylov et al. /Wave Motion 27 (I 998) I 17-136 

Fig. 7. Radius of the helix in the case ro # 0. 

The axial displacement u(e) and the angle of rotation 19(e) are then given by the following expressions: 

WV, k), 

O(C) = f 

where 

cp 

n(cp, k, ml = 

(47) 

(48~) 

is the normal elliptic integral of the third kind. The radius r(t) of the deformed helix is shown in Fig. 7. 

4.3. Solitary wave 

The solitary wave may be considered as a particular case of the general solution, when two of three roots of 
Eq. (40) are equal to each other, i.e. rt = r2, and the modulus k of the elliptic integrals, given by Eq. (43d), is equal 
to unity. The expressions for the radius of the helix and for the amplitude of the wave q = f - fmin can be obtained 
from Eqs. (43b) and (45): 

(49) 

(50) 



where 

V Krylov et al. /Wave Motion 27 (I 998) 117-136 131 

(C4 < 0). (51a,b) 

We observe that solution (50) depends on two constants, f max and fmin. In the case of the solitary wave, these 

constants must satisfy the condition u’ = 0 for 4 = 00; from this condition (see Eq. (6)) 

Ct = COS v( 1 - ,fmin). (52a) 

From Eq. (52a) and using Eqs. (44), (8b) and (17), we obtain 

Cl = 
Jr 

1 - VZn(~C3)&Z]2 - 2(.fmax + fmia). (52b) 

The relation between the amplitude of the wave qrnax and the force at infinity, &in has the form 

Vmax = c [l - sgn(oC3JJZL]2 - 2fmia. (52~) 

As noted above, in the case of the solitary wave we have f < 1. Using Eqs. (52b) and (51a,b), we can obtain the 
limit of the internal force: 

l (1 - JiTG)(1+2+KTz) 
.f,g? = 5 

(1 + JTTzz)2 
[-sgn(oCj)+fi/z]2, (53) 

where parameter u = C4/C,2 was introduced in Eq. (4Oc). 

Integrating Eq. (6) with condition (52a) and choosing the constant of integration Cg (see Eq. (19b)) in accordance 
with the condition u = 0 fore = +co, we obtain 

u(<)=cosy[J~sgn~-4-1. (54) 

It follows from Eq. (54) that, as in the case C3 = 0, the solitary wave leads to a constant shift in the axial direction. 
Thus the solitary wave propagates in the helix under an initial constant force fhn (see Figs. g(a) and (b)). It is 

clear that equilibrium is maintained, in this case, by the inertia forces associated with the rigid body rotation of the 

1.2 

0.8 

b 

0.4 

0 

(a) 
0.12 

0-d 

-40 -20 0 20 40 -40 -20 0 20 48 

4 5 

Fig. 8. Solitary wave solution for the case ro # 0: (a) radius of the helix; (b) internal force. 
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helix. From the representation of the position vector, Eqs. (1Oa-c) and (12a), it follows that the angular velocity, 
4 = -4’ + o, at infinity is given by 

/j - cT fmin CT2 c3 _ 

1 - fmin 2 ri (1 - fmin) 
(r = r2), (55) 

and is not equal to zero. From Eqs. (44) and (8b) it follows that in the case of the solitary wave, C3 = fr3ri, 

r3 = 2G/Io 1, and the angular velocity at infinity can be expressed as a function of fmin: 

fjJm = -fJ 1 _$ (aC3 > O), (56a) 
. mm 

JXZ 

4oo=a 1+G 
(aC3 < 0). (56b) 

From the condition at infinity (r = r-2), we find that 4’ = h, and from Eqs. (56a,b), we obtain immediately 

8’ = -6 = 0, and hence 

w=-&&G (DC3 > O), (574 

w=Qzn (aC3 < 0). (57b) 

Thus the constant nonzero internal force is a consequence of the rigid body rotation of the undeformed helix. As 
noted above, the case w = -A., fmin = 1 corresponds to the D’Alembert solution. 

It follows from Eqs. (57a,b) that, in the case of the solitary wave, (T is positive and that sgn(aC3) = sgn(C3). 

The sign of aC3 depends on the relationship between the directions of the rotation of the helix and the wave. Thus, 
as a result of the rigid body rotation of the helix, there is no reflection symmetry: positive and negative directions 
along the x-axis are not equivalent to each other. 

We recall that the effective length of the solitary wave in the case rg = 0 is independent of the amplitude of the 

wave and depends only on the parameter h. However, in the case of the rotating helix, the effective wave length is 

governed by two parameters: h and w. In effect, for r + r2, we have 4 >> ,/m and, thus 

rl- qmax sech2 [@a] (r - r2), (584 

where the amplitude of the wave qmax can be expressed as a function of h and w (see Eqs. (52~57)): 

52 
Smax = --2f,i,=~-2~. 

2 
(58b) 

Eq. (58a) can also be considered as the asymptotic solution for the case of a small amplitude, nmax << 1. 

It follows from Eqs. (58b), (5 1) and (8), that (similarly as in the case r-0 = 0, and r2 = 1) the initial radius of the 
helix is restored after the wave has passed. Further, we observe that, as in the case rg = 0, the solitary wave causes 
finite nonzero axial displacements and angular rotations in addition to the permanent rigid body rotation. 

5. Integral properties of the solution 

We present here expressions for the linear and angular momenta,p and H, respectively, for a single period of the 
wave. From Eqs. (22) and (4), it follows that kX = -u/k, and hence the axial momentum is 

p = -2pvRu 
s 

u’(C)de~,=-2puRo[u(4)-u(O)]k,. 

0 

(59) 
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Since the velocity of rotation is 4(t) = -4’(t) + CT , the angular momentum is 

l-l? 

H = -2pvR; 
s 

r’($’ - a) d<. 

0 

(60) 

We note that these relations lead to expressions for the axial and angular momenta in terms of complete elliptic 
integrals. 

In the case of the solitary wave, for which the helix is at rest at infinity (ru = 0. w = 0), the expressions for the 
axial and angular momenta were obtained in [2]: 

p = -2puRucosy k,, H = --ipuRi sin y k,. (6lab) 

Using Eqs. (59) and (54) we find the axial momentum for the solitary wave in the rotating helix: 

p = -2pvRo cos y dm = -2puRo , sin’;: w, &iii. (621 

The rotation of the helix at infinity does not permit one to determine readily the angular momentum using Eq. (60). 

However, excluding the rotation of the helix as a rigid body with angular momentum H,, we obtain 

L/2 

AH=H-H,=-2pvR; 
s 

{r*@‘(r) - a) - &q%) - a)1 dt, (63) 

0 

where (see Eqs. (12) and (14)) 

Jzll,, 
AH = -ipu@ sin y_ 

,3 
3fmin + Vmax (64) 

6. Conclusions 

The solutions described above correspond to traveling, propagating-rotating waves. These solutions describe 

various types of solitary and periodic nonlinear waves in an inextensible flexible helical fiber. The waves can be 

separated into two types. In the wave of the first type, there exists a point where the fiber crosses the axis of the 
helix. The effective length of the solitary wave, in this case, does not depend on the amplitude of the wave and is 
defined only by the pitch of the undeformed helix. 

In the wave of the second type, the fiber does not cross the axis of the helix. The solitary wave of the internal 

force propagates as a disturbance to an initial nonzero internal force which is a result of the rigid body rotation 
of the helix. The effective length of the solitary wave, in this case, is dictated by the pitch of the helix and by the 

angular velocity of the rigid body rotation. The reflection symmetry does not hold in this case. and parameters of 
the solitary wave depend on the direction of the propagation. 

The solitary waves, in both cases, cause finite nonzero shifts in the axial displacement and rotation, but the initial 

shape is restored. In the case of the periodical wave, nonzero axial and angular averaged velocities arise as a result 
of such shifts (Fig. 9). In the asymptotic case of small amplitude, the periodic wave appears as a sinusoidal wave. 

Note that, in addition to the traveling-wave solutions considered, some results of a numerical simulation of 
transient problems have been obtained. A discretized system was considered as a chain of masses connected to each 
other by inextensible, massless links [20]. A comparison with the analytical solution reveals that the wave shape 
and velocity correspond to the theoretical data with very high accuracy and that no disturbances exist outside the 
“effective support” of the wave. An examination of stability of the derived analytic solution was also performed in 
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Fig. 9. Periodic component of the angular velocity in the case ‘0 # 0. 

Fig. 10. Collision of two solitary waves propagating in opposite directions. 
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[20]. 6 Collisions of two solitary waves were considered numerically as well. Although the solitary waves obtained 
by the numerical simulation propagate as very stable objects, the collisions appear to be not perfectly elastic. After 

the collisions the main waves continue to propagate as solitary waves, but the amplitudes change with respect to 
&he values before the collision. In the specific case of collision of two identical waves which propagate in opposite 
directions, the amplitudes of both decrease, and small additional solitary waves are created. Such a collision of the 
waves in the helix which is at rest at infinity is shown in Fig. 10. 

The question arises: what is the cause of the energy radiation due to the collision? We should first note that 
we encounter a new phenomenon: in contrast to the traditional consideration of soliton propagation, in a certain 

sense, a change of the waveguide occurs in the considered system after the wave has passed; namely, a finite shift, 

u = -2 cos y, appears in the axial displacement and 4 = -2 sin y in the rotation. More specifically, recalling 
that the phenomenon of wave propagation in the helix is a vector phenomenon, we note that several quantities are 
associated with the wave: force, F; radius of the helix change, /RI - Ro = Ro(lrl - I); axial displacement, U; 

and angle change, 4 - hs. While the first two, force and radius change, appear as solitary disturbances, a constant, 
nonvanishing, shift occurs in the axial displacement and angle change as is mentioned above, resulting in an altered 

waveguide. The presence of these last two disturbances may be the reason for the energy radiation. In effect. the 
propagation of waves after collision requires their “perestroika” to satisfy these new conditions. In the case of 
collision of two solitary waves propagating in the same direction, the weaker wave propagates (slower than the 

stronger one) in the undisturbed helix before the collision but in the tail of the stronger one after the collision, while 
the opposite is true for the stronger wave. In the case of two waves propagating in opposite directions, both waves 

propagate initially in the undisturbed helix before the collision and in the disturbed helix after the collision. In spite 
of such energy radiation, the results show that the post-collision wave is formed as a very stable object governed 
by the given analytical description. 
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