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1. Introduction

Infertility is a common condition, as
roughly one in six couples face some
degree of infertility, defined as failing to
naturally conceive over the course of 1 year.
Male infertility factors contribute to approx-
imately half of all cases.[1] In vitro fertiliza-
tion (IVF) has made parenthood possible
for many people that could not conceive
otherwise. IVF enables fertilization of a
female egg by a male sperm outside the
female body. The selection of sperm cells
is crucial especially for intracytoplasmic
sperm injection (ICSI), a common type
of IVF, in which the clinician chooses a
single sperm cell using a micropipette
and injects it into the female egg in a dish.
Approximately 10 eggs are obtained in each
IVF cycle through a surgery subsequent to
the woman’s hormonal treatment, and it is
not uncommon that no fertilized egg
develops into a good-quality embryo.[2]

Unfortunately, much less efforts are
invested in analyzing sperm cells rather
than eggs for IVF sperm selection. The

World Health Organization (WHO) provides criteria for male fer-
tility evaluation based on imaging of the sperm sample.[3] These
criteria mainly consist of evaluating the sperm morphology,
motility, and DNA fragmentation status. While motility assess-
ment is done on live sperm cells swimming in a dish, internal
morphological assessment and DNA fragmentation assays are
typically performed on fixed and stained sperm cells, and on
different portions of the sample; hence, different evaluations
are done on different cells. Certain sperm cells may possess
WHO2010-normal morphology, but not motility, or may possess
both WHO2010-normal morphology and motility, but
fragmented DNA, causing defective embryo development or
delivery.[4] Current tests cannot distinguish between these sce-
narios leading to a lack of consistency in sperm evaluation
and selection performed by different clinicians, as well as a large
margin of error, even when automated analysis is performed.

Deep convolutional neural networks (CNNs) have recently
proven to be an efficient tool for image analysis and
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A new technique for sperm analysis is presented, measuring DNA fragmentation,
morphology with virtual staining, and motility, all three criteria on the same
individual unstained live cell. The method relies on quantitative stain-free
interferometric imaging, providing unique topographic structural and content
maps of the cell, becoming available for the first time for clinical use, together
with deep-learning frameworks and least-squares linear approximation. In the
common clinical practice, only motility evaluation can be carried out on live
human cells, while full morphological evaluation and DNA fragmentation assays
require different staining protocols, and therefore cannot be performed on the
same cell, resulting in inconsistencies in fertility evaluation. A clinic-ready
interferometric module is used to acquire dynamic sperm cells without chemical
staining, together with deep learning to evaluate all three scores per cell with
accuracy of 93.1%, 88%, and 90% for morphology, motility, and DNA frag-
mentation, respectively. It is shown that the expected number of cells that pass
all three criteria based on the current evaluations performed separately does not
correspond with the number of cells that pass all criteria, demonstrating the
importance of the suggested method. The proposed stain-free evaluation method
is expected to decrease uncertainty in infertility diagnosis, increasing treatment
success rates.
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classification.[5–9] The model is generally built from sequential
layers, each providing a nonlinear mapping of the previous layer
output to the following layer. Recently, generative adversarial
neural networks (GANs)[10] have been successfully used for vir-
tual staining of microscopic images.[11–15] These neural networks
include a generator model and a discriminator model, where the
generator takes random noise and maps it to an image, and the
discriminator classifies images as real or generated.[16] Deep
learning automatic classification of sperm cells could be the next
gold standard. However, it is still difficult to obtain reliable auto-
matic sperm classifiers or virtual staining using only qualitative
2D images as an input. The biological mechanisms that connect
sperm movement, morphology, and contents to fertilization
potential and normal pregnancy is not fully understood yet.[17,18]

In the absence of staining, sperm cells are nearly transparent
under bright-field microscopy, as their optical properties differ
only slightly from those of their surroundings, resulting in a
weak image contrast. An internal contrast mechanism that
can be used when imaging sperm cells without staining is their
refractive index.[19–21] Phase imaging creates stain-free quantita-
tive image contrast based on the optical path delay (OPD)
induced in the light beam as it interacts with the sample, which
can be recorded by interferometry. Conventional phase contrast
imaging methods for sperm cells, such as Zernike phase contrast
microscopy, differential interference contrast (DIC) microscopy,
and Hoffman modulation contrast microscopy, are not quantita-
tive, thus they do not enable interpretation of the resulting phase
images in terms of the quantitative optical thickness of the sperm
cell. In addition, these techniques present significant imaging
artifacts, especially near the cell edges. Quantitative phase imag-
ing records the full sample complex wave front including the
optical thickness map of the cell, which is equal to the integral
of the refractive-index values across the cell thickness. This map
is proportional to the cell dry mass surface density, thereby
providing cellular parameters that have not been available to
clinicians.[22] Until recently, quantitative phase imaging imple-
mentations were limited to optics labs, due to the optical setup
bulkiness, difficulty of alignment, and sensitivity to mechanical
vibrations. In recent years, we made significant efforts and
succeeded to make these wave front sensors applicable and
affordable for direct clinical use.[21,23–25]

DNA fragmentation is a critical biomarker in sperm cells.
Studies have shown that even in normal semen samples,
�20% of the sperm cells have fragmented DNA, which becomes
worse with age.[26] Sperm DNA fragmentation has been associ-
ated with reduced fertilization rates, reduced embryo quality,
reduced pregnancy rates, and increased miscarriage rates.
Thus, sperm cells with fragmented DNA should not be selected
for IVF. DNA fragmentation is not well correlated with morphol-
ogy and motility[27] and cannot be imaged at the moment without
staining. Detecting DNA fragmentation requires molecular
staining, which cannot be carried out during IVF.

In this work, we present a new approach for measuring the
DNA fragmentation status of live and unstained dynamic sperm
cells, at the individual-cell level, in parallel to measuring the cell
motility and morphology as though they have been stained. This
is achieved by using a clinic-ready interferometric module to
acquire dynamic sperm cells and record their quantitative phase
profiles, followed by using an algorithmic architecture that

includes CNNs to virtually stain the cells and classify them based
on their morphology, motility, and DNA fragmentation status.
Each of the scores for morphology, motility, and fragmentation
is mapped to a number between 0 and 1, where 0 means the
lowest possible quality and 1 means the highest possible quality.
All information is then mapped to a 3D scatter plot for each cell.

In contrast to previous attempts of finding correlations
between pairs of stain-free bright-field (low-contrast) images
and DNA-fragmentation-stained images, as well as for motility
or morphology, using machine learning,[28–34] here we use rapid
interferometric imaging, providing not only the amplitude low-
contrast image, but also the quantitative phase profile of the cell,
including internal cellular organelle contrast and content-related
cellular texture, attributed to the DNA fragmentation level of the
cell. As the phase profile is quantitative, having meaningful and
highly informative structural (topographic) and content (refrac-
tive-index)-related values on all the cell points, the gap between
the images in the input pair is smaller compared to the previous
methods that used bright-field imaging; thus, the presented
approach allows individual-cell DNA fragmentation classifica-
tion, in addition to internal-morphological-structure virtual stain-
ing of each cell (which is not possible by bright-field imaging),
enabling more accurate fertility grading, based on the triple
generalized score (WHO morphology, motility, and DNA
fragmentation).

We show that the number of cells that pass all three criteria
cannot be accurately determined by the number of cells that pass
each criterion separately, which necessitates a different fertility
grading procedure than is used today.

2. Results

The architecture of the overall system for attaining a generalized
fertility evaluation per patient is shown in Figure 1. The proposed
technique enables simultaneously obtaining, for each of the
dynamic sperm cells imaged in a dish, the full stain-like mor-
phology, DNA fragmentation, and motility status, without the
need for chemical staining. As shown in Figure 1, the analysis
includes four deep neural networks (DNNs) and least-squares
linear approximation: DNN1 performs morphological virtual
staining, DNN2 performs morphological scoring, DNN3 per-
forms DNA fragmentation scoring, DNN4 performs DNA virtual
staining, and motility scoring is performed using least-squares
linear approximation. To generate quantitative stain-free imag-
ing data, we implemented a clinic-ready holographic setup
(Figure S1, Supporting Information) to acquire stain-free quan-
titative phase maps of the cells. This setup is composed of an
inverted microscope and a custom-built common-path, compact
interferometric module, connected to the microscope camera
port (see Experimental Section). The acquired off-axis interfero-
grams were processed into the optical thickness maps of the
sperm cells, taking into consideration both their physical thick-
ness and their refractive index contents. As shown in Figure S2
and in Video S1, Supporting Information, these maps can be
visualized in HEMA-staining-like colors, thereby distinguishing
between different subcellular structures. We designed a
custom-built tracking algorithm and tracked all cells dynamically,
resulting in a space–time array per cell.
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Using the networks trained on well-established ground-truth
stain-based labels for sperm morphology and DNA fragmenta-
tion, as well as quantitative motility analysis using least-squares
linear approximation, we can obtain for each live and dynamic
cell the intracellular morphology and associated parameters,
motility parameters, and the DNA fragmentation status using
only the quantitative stain-free imaging data. We then map each
cell to one point in a 3D space, with the axes being morphology,
motility, and fragmentation values, thereby displaying the
complete cellular status of each cell, for live cells without using
cell staining. The combined cell points per patient in the 3D
space are depicted as a sphere, with the sphere volume represent-
ing the patient’s generalized fertility score. Regardless of the
triple scoring of each individual cell, DNN1 and DNN4 use
GAN models for virtual staining for visualization purposes,
which is complementary to the automatic scoring capability.

Using this scheme, we quantitatively imaged 5101 dynamic
human sperm cells from eight donors, resulting in 51 809
images. The collection of all cells measured per donor and their
representation on the 3D scatter plot uniquely characterizes the

fertility status of the donor. Instead of having three different
criteria measured on three different populations of the sample,
where there is the risk of having cells that pass one criterion and
fail one or more of the other criteria, we are now able to generate
a triple-criteria score per cell.

2.1. Full Morphology Evaluation and Virtual Staining

As shown in Figure 1 and Video S1, Supporting Information, the
morphological evaluation of each cell includes virtual staining of
the cell, extraction of the cell morphological features, and the
final cell classification, as recommended by the 2010 World
Health Organization[3] (WHO2010) for stained cells, although
no chemical staining is used and the cells are not fixated but
rather dynamically swim in a dish. For both the cell virtual
staining and the WHO2010-based morphology scoring tasks,
we used DNNs. The first DNN in Figure 1, DNN1, performs
virtual staining of individual sperm cells.[14] It is based on a
conventional GAN architecture that is designed to generate

Figure 1. System schematics and working modes. Architecture for analyzing the full sperm morphology, motility, and DNA fragmentation status of large
numbers of dynamic live sperm cells at the single-cell level, using stain-free quantitative imaging and deep learning, yielding more accurate donor fertility
scores.
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new high-quality images. DNN1 was trained with the stain-free
optical thickness maps of sperm cells and their chemically
stained counterparts as labels, for the exact same sperm cell.
Then, the trained network could transform the stain-free optical
thickness maps into virtually stained images, making them look
as though they were chemically stained, without actual staining
(Figure S3, Supporting Information), thereby providing the
information necessary for gold-standard evaluation. The network
was tested by classification of a trained embryologist, after ran-
domizing the data order, and yielded very similar results to those
obtained by chemical staining, as presented below. In the current
study, virtual staining is implemented on live and highly
dynamic sperm cells for the first time, in contrast to our previous
research that demonstrated virtual staining on fixed sperm
cells.[14] In addition, we analyzed the optical thickness maps
of the cells using classical image processing techniques to auto-
matically extract six morphological features, including nucleus
area, acrosome area, total head area, mean posterior–anterior dif-
ference, dry mass, and the variance of the optical thickness values
quantifying the texture of the cell. These six features were calcu-
lated as explained in the study by Mirsky et. al[35] and were
used as input to DNN3 for DNA fragmentation scoring, as well
as to give the clinician further quantitative morphological param-
eters, which are yet to be standard for use in the future. Note that
virtual staining is demonstrated as an additional annotation
guide to the embryologist, and not as the input or ground-truth
label to DNN2 for morphological scoring or DNN3 for DNA
fragmentation scoring presented below.

DNN2 in Figure 1 performs sperm scoring based on the
WHO2010 morphology guidelines, which include five criteria:
head shape, acrosome size, number of vacuoles, midpiece shape
and orientation, and cytoplasmic droplets. Regardless of our
experiment that examined all cell population without bias, these

WHO2010 guidelines for sperm morphology were previously
formulated by examining sperm cells retrieved from the human
female cervical secretion following sexual intercourse, where it is
assumed that sperm cells that reached there have higher fertili-
zation potential. During our training process, the network
received the optical thickness map of the cell along with the
ground-truth WHO2010 classification of a trained embryologist
as labels, which is based on the chemically stained image. Once
the model is trained, the network predicts the morphology score
without using the chemical staining-based label. The network
outputs six parameters; the five WHO2010 criteria per cell (head
shape, acrosome size, number of vacuoles, midpiece shape and
orientation, and cytoplasmic droplets) together with a sixth
parameter: the direct overall prediction of whether the cell passes
all five criteria (independent of the first five outputs) according to
the embryologist. In addition, a combined overall prediction
checking if the model predicted a “pass” for all five qualifications
presented by the first five outputs was calculated, for comparison
with the direct overall prediction (see Experimental Section).
Figure 2 presents the architecture of DNN2, as well as the
receiver operating characteristic curve (ROC) and precision recall
curve (PRC). This network was built as a standard CNN because
the entire information necessary for cell classification based on
the WHO2010 guidelines is available in the image. We started
with very few layers and slowly increased the number of layers
till generalized learning was obtained, as indicated by the
training curves as well as the test success metrics.

The ROCs for the five qualifications attained areas under the
curves (AUCs) of 95.7%, 96.3%, 100.0%, 98.7%, and 86.7%,
respectively. The PRCs for the five qualifications attained
AUCs of 93.6%, 95.5%, 100.0%, 99.7%, and 97.4%, respectively.
The direct overall parameter, representing the direct classifica-
tion, attained AUC of 96.2% for the ROC and 93.5% for the

(a)

(b) (c)

Figure 2. DNN1 for morphological sperm classification. a) CNN architecture predicting morphological features per stain-free image. b) ROC curves for
the seven outputs of the network. The direct overall score is a prediction whether the cell passes all five criteria (independent of the first five outputs), and
the combined overall score indicates whether the first five output are positive. c) Precision-recall curves for the seven outputs of the network. C, convolu-
tional layer; R, ReLU activation; MP, max pooling layer; FL, flattening layer; FC, fully connected layer; Sig, sigmoid activation function; O, output.
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PRC, precision of 90.9%, and accuracy of 93.1%. AUCs are used
here as an indicator of network performance. Precision is
expected to be a dominant predictor for a successful sperm clas-
sifier, as a person’s potential of fertilization is mostly dependent
on his best cells. These cells reach the egg in natural insemina-
tion and are the only cells that should be selected for IVF. Once
the network is trained and tested, it can classify the cell without
having the ground-truth label from the trained embryologist. The
direct overall output was set as the coordinate value of the
morphological axis in the 3D scatter plot for the cell examined.

2.2. Motility Evaluation

To assess the sperm motility on an individual-cell basis, we used
the space–time arrays extracted from the cell tracking algorithm,
composed of the locations of each cell in each frame. The trajec-
tory for one representative cell is shown in Figure 3. We divided
the trajectory into one-second windows with a half window
stride, as the qualification of swimming linearly in progressively
motile cells is only expected over short time intervals. One of
these windows is shown on the right of Figure 3. We then cal-
culated eight motility parameters suggested by the WHO2010.
These include curvilinear velocity (VCL), straight-line velocity
(VSL), average path velocity (VAP), linearity (LIN), wobble
(WOB), straightness (STR), beat-cross frequency (BCF), and
mean angular displacement (MAD). The median values of these
parameters over all windows per cell were taken as the final
motility parameters per cell. For each donor, another subsample
was tested by an experienced embryologist according to the qual-
itative WHO2010 protocol, classifying each sperm cell into one of
three motility classes: immotile, nonprogressively motile, and
progressively motile. To compare the qualitative and quantitative
motility tests, we conducted two comparative experiments. First,
we calculated the correlation between the qualitative and quanti-
tative motility test results over all eight donors. To do this, we
chose four quantitative motility parameters (VCL, VSL, VAP,
and VSL� LIN), which most resembled the qualitative assess-
ment, resulting in high significant correlations. The other param-
eters yielded small or no correlation. To cancel the effect of
sampling errors, a video containing 87 sperm cells was processed

both quantitatively by our automatic algorithm and qualitatively
by the embryologist. This increased the correlations (from 0.49 to
0.75) and their statistical significance (p-values decrease from
0.15 to 10�16). We then used a least-square approximation to
define a linear equation that maps all automatically extracted
quantitative motility parameters to the three qualitative classes
defined above, to ensure that no previously acquired fertility
score is overlooked by our protocol. The normalized function
value of the linear equation was used as the coordinate of the
motility axis in the 3D scatter plot.

2.3. DNA Fragmentation Evaluation and Virtual Staining

We used DNN3 to grade each live sperm cell according to its
DNA fragmentation level. In contrast to Barnea et al.[36] that
shows only statistical difference for specific parameters in large
populations of sperm cells measured by interferometry, with
population overlaps, here we provide an individual-cell DNA
measurement without staining. For training, we used pairs of
images: the stain-free quantitative thickness map of the cell
and the image of the same cell after it was stained by acridine
orange, a DNA fragmentation indicator emitting green fluores-
cence for double-stranded DNA (nonfragmented) and red
fluorescence for single-stranded DNA or RNA (fragmented) as
labels. Results are shown in Figure S4, Supporting
Information. The automatically extracted morphological param-
eters were also inserted into DNN3, creating a bimodal neural
network. Figure 4a presents the network architecture (see also
Experimental Section). The ROC AUC and PRC AUC were all
above 0.98. After training and testing, the network can take a
stain-free quantitative optical thickness map of the cell and out-
put the cell fragmentation level without the need for chemical
staining. DNN3 used a bimodal neural network architecture.
It receives both the optical thickness map and the six morpho-
logical features calculated based on this map, in addition to
the chemically stained cell image label, because these features
were found to be correlative to the DNA fragmentation level
of the cell,[36] practically guiding the network. When training
without these six features, we obtain inferior results: accuracy
of 0.90, ROC AUC of 0.78, and PRC AUC of 0.98.
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Figure 3. Automatic motility feature extraction. Example of a sperm cell tracked over 4.9 s (left), enlargement of a 1-sec segment and automatic calcula-
tion motility parameters (right).
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Another DNN (DNN4) used a GAN architecture to
generate virtually stained DNA fragmentation images. It was
trained to virtually stain the quantitative optical thickness
map, creating a semblance of its acridine-orange-stained
counterpart. The network architecture is shown in Figure 4b
and its virtual staining operation is demonstrated in
Figure 4c, yielding a virtually stained image that is very similar
to the chemically stained sperm cell image shown in the
center. Note that this virtual staining was not used to score
the cells presented in Figure 5 and 6 according to their DNA
fragmentation status. This scoring was done by DNN3. Only
then, we used DNN4 with the fragmentation score from
DNN3 as label to virtually stain the optical thickness map and
make it look as if the cell was chemically stained with acridine
orange, as a visual tool to the embryologist. The verification of
DNN4 virtual staining results was done by a trained embryologist
(see Section 4.7).

2.4. Patient’s Fertility Scoring

To evaluate the patient’s fertility, we calculated each sperm-cell
morphology, motility, and DNA fragmentation as explained
above, for live cells and without staining, and then mapped
the cell into a single point in a 3D space with axes representing
these three criteria. Our evaluation also consists of virtual mor-
phological and acridine-orange staining per cell. As shown in
Figure 5, the presented technique enables gathering all single-
cell triple-criteria information regarding the population of sperm
cells. The left column in Figure 5 shows the resulting 3D scatter
plots for the eight donors measured while presenting both the
2-D projection of each cell on each of the three planes and also
the location of that cell in the 3D space. The right column in
Figure 5 shows the intersections of the three criteria and the left
column shows the Venn diagrams, where each of the three
circles represents a specific criterion. The number of cells that

(a)

(b)

(c)

Figure 4. Stain-free DNA fragmentation classification using DNN3 and virtual staining using DNN4. a) Architecture of the bimodal neural network,
predicting the fragmentation level for each stain-free optical thickness map. b) Architecture for the GAN model used for DNA fragmentation virtual
staining with the discriminator network (top) and generator network (bottom). c) Comparison between unstained optical thickness map (left) with
the actual chemically stained cell image (center) and the generated virtually stained cell image (right). C, convolutional layer; R, ReLU activation;
MP, max pooling layer; Fl, flattening layer; FC, fully connected layer; Sig, sigmoid activation function; O, output; AP, average pooling layer; LR, leaky
ReLU activation; RS, resampling layer; CT, convolution transpose layer.
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pass each criterion, together with the number of cells that pass
each set of two criteria and all criteria, is displayed, where the
passing thresholds are set to 0.5 for morphology, 0.29 for motil-
ity, and 0.61 for fragmentation. This figure demonstrates the
great variability between donors. In relation to the other criteria,
some donors have more cells that pass the fragmentation tests

(donors 2–5), while others have more cells that pass the motility
test (donors 1, 6–8). Some donors have more cells that are both
nonfragmented and morphologically intact (donors 1–3, 5, 7),
while others have more cells that are both morphologically intact
and motile (donors 4, 6, 8). The percentage of the overall passing
cells differs among the donors: donor 5 (Figure 5e) has
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Figure 5. Triple-criteria sperm evaluation at the single-cell level for eight donors. (Left) 3D scatter plot, where each cell is represented by a red dot, and its
three projections onto the 2D planes are represented by blue dots. (Right) Venn diagrams for the donors with each of the three fertility criteria and their
intersections (morphology above a threshold of 0.5, motility above a threshold of 0.29, and fragmentation above a threshold of 0.61). a) Donor 1.
b) Donor 2. c) Donor 3. d) Donor 4. e) Donor 5. f ) Donor 6. g) Donor 7. h) Donor 8.
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significantly more cells than donor 2 (Figure 5b), yet donor 2 has
three more sperm cells that pass all three criteria. The thresholds
may be adjusted according to the patient’s specific needs, as
shown in Figure S5 and Video S2, Supporting Information.

To check whether the tests dependencies were consistent
between the donors, we checked the statistical independence
between the criteria per each donor. This was implemented by mul-
tiplying the three percentages of cells passing each criterion and
comparing the result to the percentage of the cells passing all three
criteria. For example, for donor 3 (Figure 5c), the number of cells
that actually pass all three criteria is 1.53 times of the number of
cells that are expected under the independent-criteria assumption,
whereas for donor 4 (Figure 5d), the same ratio is only 0.95. This
shows that the criteria are not completely independent, as the
expected percentage of passing cells under the independent-criteria
assumption is different from the end-result and that the criteria
dependencies differ between the donors.

We now define the fertility score based on the current practice
and two new fertility scores based on the presented triple-criteria
capability. Due to the inability to measure morphology, motility,
and DNA fragmentation all together on the same cell, fertility
scoring today is carried out by checking each criterion separately,
on different parts of the sample, and either assuming that the
sample is homogenous or repeating the examination to check
for consistency. The current fertility assessment relies on aver-
aging the cells tested per each criterion separately, resulting in
three different scores, yet missing the intersections between the
criteria. To define the current-practice score, we first calculated
the average results of each fertility assessment (morphology,
motility, and DNA fragmentation) separately, averaging over
all cells per donor. Then, we normalized each assessment score
over all donors and found the distance of the resulting (x, y, z)

point from the origin of the 3D space. We define P as the distance
from the origin in the 3D space, where each dimension corre-
sponds to one of the three normalized coordinates (morphology
[x], motility [y], and DNA fragmentation [z])

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

< x >2 þ< y >2 þ< z >2
q

(1)

where <x>¼PN
i¼1 xi=N is the normalized morphology value

averaged for all N cells measured per donor, <y>¼PN
i¼1 yi=N

is the normalized motility value averaged for allN cells measured
per donor, and <z>¼PN

i¼1 zi=N is the normalized DNA frag-
mentation value averaged for all N measured cells per donor.
This normalized overall score P represents the fertility scores
obtained by the current practice, as the averaging was done
on each criterion separately, with the underlying assumption
of sample homogeneity.

On the other hand, based on the presented unique capability
to measure triple criteria per cell, we can define a new score, K, as
follows

K ¼ 1
N

X

N

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2i þ y2i þ z2i

q

(2)

This parameter takes the distance from the origin for each cell
in the normalized 3D space, and averages all these distances per
donor.

We also define K1 as the percentage of cells per donor that pass
all three criteria, where ∧ is the logical “and” operator. The
thresholds required to pass each criterion can be chosen per diag-
nosis goal. For example, in case of Figure 5, it is defined as
follows

Figure 6. Donor fertility scoring. 3D plot representing all donors by their fertility score based on the current-practice score (in brackets, after the donor
number) and the proposed scores K1 | K, based on having the ability to measure all criteria together at the individual-cell level. The distance of each donor
from the origin is correlative to the current-practice fertility score, whereas the size of each sphere is correlative to the proposed score.
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K1 ¼
1
N

X

N

i¼1

ðxi > 0.5Þ ∧ ðyi > 0.29Þ ∧ ðzi > 0.61Þ (3)

These new scores, K and K1, depend on how well the cells
stand in all three criteria, whereas a donor might have no sperm
cells that pass all three criteria together and still have a high
previous fertility score P.

We now show that these new scores result in different donor
grading, implying that erroneous donor grading is done today,
even under the homogenous sample assumption. Figure 6 shows
the previous fertility scores together with the new scores obtained
for the eight donors. In this figure, each sphere represents a
donor. The distance of the center of the sphere from the origin
of the 3D space represents the donor’s status as per the current
practice, P, and can be seen as the first value next donor number.
On the other hand, the sphere diameter is correlative to the
donor’s first new fertility score, K, which can be seen as on
the right in the second row next to each donor’s sphere. The
second new score, K1, can be seen on the left in the second
row next to each donor’s sphere. As seen, the donors’ rankings
according to the old and new scores differ from each other.
Donor 3, for instance, takes the last place according to the K
score, as this donor’s average sperm quality is the lowest,
although donor 4 would be labeled as the worst donor according
to the previous fertility grading, P. Donor 1 takes the fourth place
according to the K score, while he takes fifth place according to
the K1 score and sixth place according to current score, P. On the
other hand, the two best donors, donors 7 and 6, are consistent
among all three scores, while donor 5 is the third best donor for
both the K and the P scores but not for the K1 score, implying that
the new scores may be especially useful in discriminating
situations of infertility.

3. Conclusion

In this work, we present a new capability to simultaneously mea-
sure individual sperm morphology, motility, and fragmentation,
as well as virtually stain the sperm cells. Today, a clinician is
unable to gather this necessary information per sperm cell,
and instead the fertility examination provides independent per-
centages regarding each evaluation separately, on different parts
of the cell population, where statistical changes may occur
between subsamples. Thus, currently, there is no information
regarding how many cells would have passed two or all three
tests. In addition, the harsh fixation and staining protocols
required for performing the morphology and DNA fragmenta-
tion assays might damage the reliability of the assays if not per-
formed correctly, and create different results when performed by
different labs. Our virtual classifiers solve these issues as they do
not require staining and perform all three assays on the same
cells, while they are alive and dynamic. We show that our virtual
assays correlate with the chemical gold standards, and when
applied together on each cell, give us the capability to consider
the previously unavailable intersections between criteria when
counting the normal and abnormal cells per patient. We show
that patients may differ in the statistical dependencies of the dif-
ferent tests (Figure 5) and that consequently a patient with overall
lower independent scores may very well have a higher score per

cell or even a higher percentage of qualified sperm cells
(Figure 6), emphasizing the need for the new approach and
the insufficiency of the current examination.

This approach is expected to give rise to personalized sperm
quality evaluations by adjusting the thresholds to suit the current
need. Figure S5 and Video S2, Supporting Information, show
how different thresholds result in different sperm groups.
Without any specialized needs, one may want to use the original
thresholds, and obtain a result similar to that which is shown in
Figure S5a, Supporting Information. However, another would
possibly want to increase the fragmentation threshold, as shown
in Figure S5b, Supporting Information, securing a low percent of
fragmented cells from a potential sperm donation. In another
case, one may personalize these thresholds for selecting sperm
cells for fertilization and may want to raise all thresholds in order
to select the most promising sperm cells, creating scatter plots
similar to the one in Figure S5c, Supporting Information.
Other situations may result in decreasing or increasing different
thresholds, depending on which patient is being evaluated, what
types of infertility problems he possesses and for what reason
this evaluation is being held.

Here, we demonstrated the usefulness of the method for male
fertility evaluation prior to IVF. In the future, the integration of a
portable clinic-ready interferometric module that can be attached
to the standard microscopic systems used today in the clinic,
together with our virtual staining and classification triple-criteria
method at the single-cell level, can enable computer-assisted
sperm selection during IVF in real time, allowing clinicians to
choose the most qualified sperm cells for egg injection, with
the best morphology, motility, and DNA fragmentation scores.
As the scoring is automatic, rather than manual, in the future,
the systemmay be integrated with a robotic selector and indepen-
dently choose the sperm cells with the highest probability of
fertilization. Moreover, incorporating these systems will give rise
to advanced research linking types of chosen sperm cells with
fertilization and pregnancy success, with the ability to personal-
ize medicine for patients suffering from fertility problems.

To conclude, we have suggested a new approach that utilizes
stain-free quantitative phase imaging and deep learning, in order
to improve male fertility assessments through combined
morphology, motility, and DNA fragmentation scores, allowing
clinicians and researchers to obtain previously unattainable
fertility evaluations at the single sperm-cell level.

4. Experimental Section

Sample Preparation: Upon obtaining the institutional review board
approval of Tel Aviv University, semen samples were collected from eight
randomly selected donors between the ages of 18 and 45, after they signed
an informed written consent. The samples were left to liquefy for 30 min.
Sperm cells were isolated from the semen fluid using a PureCeption
bilayer kit (ORIGIO, Målov, Denmark) in accordance with the manufac-
turer’s instructions. Then, the sample was suspended in human tubal fluid
(HTF, 3 mL) medium (Irvine Scientific, CA, USA) and placed on top of a
40% and 80% silicon bead gradient and centrifuged for 20min at
1750 rpm. The supernatant was removed and cells in the pellet were resus-
pended in 5mL of HTF before centrifugation at 1750 rpm for 5min. The
supernatant was discarded and the pellet containing the living sperm cells
was resuspended in HTF (100 μL). For the stain-based morphological
assays, 5 μL of the sample was mixed with 5 μL of QuickStain
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(Biological Industries, Beit Haemek, Israel). For the stain-based DNA
fragmentation assays, the sample was washed with HTF (5mL) before
centrifugation at 1750 rpm for 5min. The supernatant was discarded,
and the pellet was vortexed gently. The cells were then fixed by slowly add-
ing 5mL of methanol–acetic acid mix (3:1). After 5 min of incubation at
room temperature, the cells were centrifuged at 1750 rpm for another
5 min and the supernatant was discarded. The pellet was resuspended
in the fixative solution (0.1 mL). Next, the solution was placed on the cover
slip and stained with acridine orange (0.19 mg mL�1) for several hours
before imaging.[36]

State-of-the-Art Fertility Examination: For each donor, 10 μL of the
sample was used for stain-based morphological evaluation, 10 μL for con-
centration and motility evaluation, 10 μL for stain-based DNA fragmenta-
tion evaluation, and the rest was used for stain-free interferometric assays.
All state-of-the-art examinations were carried out according to the
WHO2010 guidelines.[3] For stain-based morphological analysis, 200
QuickStain-labeled cells were assessed on a slide according to
WHO2010 guidelines using an inverted microscope (CKX53, Olympus)
with 100� oil objective and a 10� ocular. Sperm concentration and motil-
ity were examined in a Makler counting chamber (Sefi Medical
Instruments, Haifa, Israel) under an inverted microscope (Primovert,
Zeiss) with a 20� oil objective and 10� ocular. For stain-based DNA
fragmentation analysis, the acridine-orange-labeled cells were imaged
on a slide by a confocal fluorescence microscope (Zeiss LSM 510-
META) using a 25�, 1.4 numerical-aperture microscope objective.
Excitation wavelengths were 477–488 nm, and emissions were at
572–668 and 505–550 nm.

The correlations between our results and those obtained by the embry-
ologist were R¼ 0.85, p¼ 0.07 for morphology, R¼ 0.9, p¼ 0.03 for
motility, and R¼ 0.84, p¼ 0.07 for fragmentation.

Interferometric Phase Imaging: The optical system architecture is shown
Figure S1, Supporting Information. The sample was illuminated by a HeNe
laser (Thorlabs Model HRP170) with a wavelength of 632.8 nm, and was
imaged by an inverted microscope consisting of microscope objective MO
(Olympus PlanApo N, 60�/1.42 oil) and tube lens TL (focal length:
150mm). The sample magnified image entered a clinic-ready portable
interferometric module,[24] where it was split by beam splitter BS. One
beam was spatially filtered by lenses L1 and L2 ( f¼ 100mm) and a
15 um pinhole, turning it into a reference beam, and then projected toward
the camera by a corner retroreflector mirror, and the other beam was pro-
jected toward the camera at a small angle using a laterally shifted corner
retroreflector mirror. The combined beams were projected through a 4f
system composed of lenses L3 ( f¼ 50mm) and L4 ( f¼ 40mm), and
the resulting off-axis image hologram was produced on the digital camera
(iDS UI-3880CP Rev.2, 3088� 2076 pixels, 2.4� 2.4 μm each). In total,
231 one-minute interferometric videos were recorded at 40 frames per sec-
ond on nonoverlapping field of views for the eight donors. Each off-axis
hologram from each video frame was digitally Fourier transformed and
one of the resulting cross-correlation terms was cropped and inverse
Fourier transformed, thereby reconstructing the complex wave front of
the sample. The phase argument underwent a phase unwrapping,[37]

and the result was divided by 2π and multiplied by the illumination
wavelength, resulting in the optical path delay (OPD) or optical thickness
map of the sample.

Cell Tracking Algorithm: The resulting OPD videos were processed using
a specially designed cell-tracking algorithm, resulting in a space–time array
per cell. This array consisted of the location of the cell in each frame and
was used for the automatic motility, stain-free fragmentation, and stain-
free morphological assessments. Connected component labeling is used
to find the centroid of each cell. Detected cells in different frames that were
close in time and space were grouped as the same cell; cells were included
if recognized in less than five consecutive frames; cells containing less
than 15 frames were not included.

Databases and Network Training: DNN1 for virtual staining was trained
and tested (0.8:0.2) on 1328 pairs of cell images, each of them contained
the stain-free OPD profile of a cell and the coinciding morphologically
stained bright-field image of the same cell. DNN2 for morphological scor-
ing was trained, tested, and validated (0.8:0.1:0.1) on 720 cells from this

database. DNN3 and DNN4 for DNA fragmentation scoring and virtual
staining were trained, tested, and validated (0.8:0.1:0.1) on 595 pairs of
cell images, each of them contained the stain-free OPD profile of a cell
and the coinciding DNA-fragmentation-stained bright-field image of the
same cell. The database of the swimming cells contained 5101 dynamic
human sperm cells with trajectories tracking, originated from eight
donors, resulting in 51 809 images. This database was used for motility
scoring and for correlation of the results to the gold-standard morphology,
motility, and DNA fragmentation evaluations of the donors performed by
the embryologist according to the WHO2010 recommended protocols. In
the network training, we have initialized the hyperparameters based on the
default values in Tensorflow. Then, the Adam optimizer tuned the learning
rate during training.

Automatic Stain-Free Morphological Evaluation: For morphological
evaluation, the OPDmaps were filtered so that only frames that resembled
in-focus cells viewed from an axis perpendicular to the major axis of the
cell remained. Cells with flat head orientation were chosen. In the clinic,
the cells analyzed according to the WHO2010 morphological evaluation
are stained and stuck to the floor of the dish in a flat-head orientation.
To best train a network to perform similarly to the embryologists and also
to enable a comparison with the WHO2010 guidelines, our filtering algo-
rithm automatically used only images of cells that align with that criterion.
Some of the necessary features for a sperm to be considered morphologi-
cally intact are barely seen if the sperm is in different orientations and
therefore such images would be insufficiently informative for the model.
We then extracted the total head area, nucleus area, acrosome area, mean
posterior–anterior difference, mean OPD, and variance of the OPD.
Ground-truth annotation for DNN2 training was performed by an experi-
enced embryologist. The data were randomized several times and
assessed by the embryologist in coded manner. The embryologist classi-
fied each cell according to the five following qualifications for the sperm
head and provided a pass-or-fail result[3,38]: a) The head should be smooth
with an oval-like shape with a width-to-length ratio of roughly 3:5. b) The
acrosome should be between 40% and 70% of the head area and should
be clearly visible. c) There should be no more than two small vacuoles, and
they should occupy less than 20% of the sperm head and exist outside the
postacrosomal region. d) The midpiece should be aligned with the head’s
major axis, should be about the length of the sperm head, and should be
regularly shaped and slender. e) Residual cytoplasm should not exceed
one-third of the sperm’s head size. The sperm head parameters were
assessed directly in our analysis. The WHO2010 guidelines regarding
the sperm tail state the following. a) The principal midepiece should
be uniform along its length. b) The tail should be thinner than the mid-
piece. c) The tail should be�45 um long. d) There is no sharp angle in the
tail, indicative of a flagellar break. These tail defects are indirectly
incorporated in our overall score of the sperm cell. The first and second
tail defects are indirectly included in our analysis, as the clinician assessed
the entire sperm cells, and the neural network received slightly more than
just the midpiece. The third requirement is quantitative and normal gold-
standard assessments typically do not incorporate it in practice. The fourth
tail defect is also indirectly incorporated into our analysis by using the
motility algorithm, as severely defected tails hinder the motility. The man-
ual analysis was done by a single highly experienced clinical embryologist,
head of an IVF lab in a major hospital, with more than 15 years of experi-
ence. To assess the embryologist subjectivity, we wanted to see that the
difference between him and the model prediction is similar to the typical
difference between different embryologists, which is estimated to be up to
5%.[39] We provided the embryologist with a dataset given to him five
times, each time in a random order, and gathered his annotation on
the data. We then computed the correlation between his annotation
and the prediction DNN2, and found a correlation of 96%with significance
in the order of 10e-57. In addition, the correlation between his own
annotations was 95% with a similar significance.

We used a previous sperm database[35] and built here a new CNN clas-
sifier, DNN2. The input to the model was the preprocessed OPD image of
the cell (size 200� 200 pixels), as they were vertically centered and rotated
to the same direction, with the major axis of the cell being horizontal.[35]

The images were 2� augmented with vertical flipping. The output was a
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binary vector of length 6 predicting if the cell passed each of the five criteria
(a–e), and a direct overall prediction (stating whether the cell passed all
five criteria together). The error of each WHO2010 feature was used in the
loss function, forcing the network to account for these features.
Calculating these features also enabled checking whether the direct overall
prediction of the model is better than the analyzation based on the first
five outputs.

The ground-truth labels of the cells are binary; 0 (negative) being abnor-
mal according to the WHO2010 guidelines and 1 (positive) being normal.
The model predicts if a cell is normal or abnormal by outputting a value
between 0 and 1, where the closer it is to 0 the more the model is confident
that cell is abnormal and vice versa. True positive (TP) is defined as a cell
that is classified by the model as positive (above 0.5) and it is indeed posi-
tive (1) according to WHO2010. True negative (TN) is defined as a cell that
is classified by the model as negative (below 0.5) and it is indeed negative
(0) according to WHO2010. False positive (FP) is defined as a cell that is
classified by the model as positive (above 0.5) but it is negative (0) accord-
ing to WHO2010. False negative (FN) is defined as a cell that is classified
by the model as negative (below 0.5) but it is positive according to
WHO2010. Based on TP, TR, FP, and FN, the confusion matrices are
defined (see Figure S6, Supporting Information), as well as the true
positive rate (recall), precision, and accuracy. The ROC and PRC curves
are obtained by changing the default threshold of 0.5 to a range of values
between 0 and 1.

The architecture of the model is shown in Figure 2. It consisted of three
CNN layers with 32, 64, and 128 kernels of size 3� 3, ReLU activation
functions and padding set to ’same’, with max pooling layers of size
2� 2, dropout layers with probability of 0.5 and 2 fully connected (FC)
layers of size 1500 and five with the same dropouts and activations, with
an L2 kernel regularizer consisting of a penalty of 0.001 and a final sigmoid
activation function. The Adam optimizer was used with a learning rate of
0.001 and the compilation consisted of a custom binary cross entropy
weighted loss, computing a weighted sum of all the individual feature’s
binary cross entropy losses[40,41] (see equations in the Supporting
Information). The model was trained with a batch size of 100 and
6000 epochs with a training–validation–test split of 80%–10%–10%.
The code was written in Python in Google Collaboratory using
Tensorflow 2.3.0 with Tensorflow Keras 2.4.0.

Automatic Motility Evaluation: To automatically assess sperm motility,
we created an algorithm that takes the space–time arrays of the cell track-
ing algorithm as the inputs, and outputs each donor’s motility scores. A
progressive sperm cell swims fast and in a linear projection at a velocity of
at least 25 μms�1 .[3] As linearity is expected only for short time-periods
and short distances, one-second windows in increments of half a second
were selected to assess progressivity[38] and the median values were cho-
sen for each motility score per cell. The motility features extracted were:
a) VCL—time-averaged velocity of a sperm head along its actual curvilinear
path. b) VSL—time-averaged velocity of a sperm head along its linear
estimated path—a straight line connecting its first and last spatial points.
c) VAP —time-averaged velocity of a sperm head along its average
estimated path. The average path was calculated as a third-degree polyno-
mial approximation of the original path. d) LIN—the linearity of the
curvilinear path calculated as the ratio of the VSL to the VCL.
e) WOB—oscillation of the actual path about the average path, calculated
as the ratio of the VAP to the VCL. f ) STR—linearity of the average path,
calculated as the ratio of the VSL to the VAP. g) BCF—the average rate at
which the curvilinear path crosses the average path. h) MAD—the time-
averaged absolute values of the instantaneous turning angle of the sperm
head along its curvilinear trajectory. i) Progressiveness (PROG)—a cell is
considered progressive if its VSL is at least 25 μm s�1 and its LIN is at least
0.6. To compare our results to the previous qualitative motility results
according to the WHO2010, we created a least-squares-based linear trans-
formation that uses all nine features (a–i) and maps them to a prediction
in the original scale of 1–3 (immotile to progressively motile) that were
given to the cell by the embryologist. After all cells were given a motility
score based on this three-class assessment, the average was taken as the
final motility score per donor.

Stain-Free DNA Fragmentation Evaluation: We created neural networks
for DNA fragmentation classification and virtual staining. For training, we
used the database described in our previous work, which contains pairs of
OPD maps (size 224� 224 pixels) and the same cell labeled in acridine
orange and imaged under a confocal fluorescence microscope (Zeiss LSM
510-META).[36] Each fluorescent cell was evaluated in a random order by
the experimentalist in a color scale of 1 (red) to 5 (green). This number
was used as the gold standard while training a five-class CNN classifier.
The inputs to the network were the stain-free OPD map, and the cell dry
mass, mean anterior–posterior difference, head, acrosome and nucleus
areas and head OPD mean and variance. The CNN classifier architecture
is shown in Figure 4a. The OPD image went through five CNN layers, while
the features went through three FC layers. All the layers in the first two
parts had the ReLU activation function. The results of both the subnet-
works were concatenated and inserted into the third and final part con-
sisting of an additional three FC layers and the output, while the
activation function of the hidden layers was the leaky ReLU with a slope
coefficient (αÞ of 0.3, and the final activation was a sigmoid with the loss
being weighted binary cross-entropy. The ground-truth of each cell was
between zero and one, while class 1 was given a value of 0.2, class 2 a
value of 0.4 and so on, with class 5 being given a value of 1. The predicted
class of each cell was the one whose value was closest to the model pre-
diction. The classifier had a train–validation–test data split of 80%–10%–
10%. The model was trained on five Monte-Carlo cross-validation sets. The
weight for each class was defined as the ratio between the number of sam-
ples from the major class and the number of samples from the current
class,[42] in a similar way to DNN2. To avoid overfitting, a dedicated train
set was used during training, and the model weights finally selected were
those that resulted in the best validation accuracy. The final model’s suc-
cess metrics were based on the test set that does not overlap with the
validation and training sets. See the resulting test-set confusion matrices
in Figure S6, Supporting Information.

Another network (DNN4) was used for individual-cell virtual staining. It
mapped the predicted fragmentation status from the classifier to the
expected acridine orange color and visualized the cells as though they have
been stained by acridine orange, producing virtually stained images (size
112� 112 pixels), but without using chemical staining. First, we took all
the fluorescent images of each cell and split the cell bounding box into
nine three by three patches. For each patch, we calculated the ratio
between the average green and red channel values. Then, for each cell,
we created a nine-feature vector of the results sorted in an ascending
order. We used a k-means algorithm (k¼ 9) to cluster the images, and
then grouped the clusters into five groups of colors. Then, we created
a GAN, with architecture shown in Figure 4b, which was trained separately
for each class, as the input to the discriminator would switch from a
resized version of the original image belonging to that class, to the
generated image. This DNA fragmentation virtual staining model was
evaluated in a similar manner to the morphological virtual staining model.
An experienced embryologist received 100 virtually stained cells and clas-
sified them to the five classes, 4 times in a row, where in each run the
cells were shown to him in random order. The correlation between the
ground-truth classes and the embryologist came out to be 0.967 with
p-value < 0.0005.
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