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We present a new optical method for solving bounded (input-length-restricted) NP-complete combinato-
rial problems. We have chosen to demonstrate the method with an NP-complete problem called the
traveling salesman problem (TSP). The power of optics in this method is realized by using a fast
matrix–vector multiplication between a binary matrix, representing all feasible TSP tours, and a gray-
scale vector, representing the weights among the TSP cities. The multiplication is performed optically by
using an optical correlator. To synthesize the initial binary matrix representing all feasible tours, an
efficient algorithm is provided. Simulations and experimental results prove the validity of the new
method. © 2007 Optical Society of America
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1. Introduction

NP-complete combinatorial problems represent a
group of problems that are solvable in polynomial
time on a nondeterministic Turing machine and can
be transferred from one problem to another by us-
ing reductions1 (which means that if one of these
problems can be solved within a certain time com-
plexity, all of the other problems in this group can be
solved within almost the same time complexity). In
spite of many years of research, there is no known
efficient (polynomial-time) solution to the problems
belonging to this group on a (deterministic) Turing
machine. A typical representative problem of this
group is the traveling salesman problem (TSP). The
TSP, which has a few common versions, is usually
involved in finding the shortest tour of a salesman
going through a certain number of cities. The dis-
tances (weights) between the cities are known. The
main constraints of this problem are that the sales-
man has to go through all of the cities and visit each
city only once. Many examples of TSP applications
can be found in the literature.2 However, much of the
work on the TSP is not only motivated by its appli-
cations but also by the fact that the TSP provides a

sound platform for studying the general schemes ap-
plied to a wide range of combinatorial optimization
problems. The TSP as well as other NP-complete
problems can be used as an efficient tool for testing
the performance of computational systems, i.e., bet-
ter computational systems can solve the TSP faster.
Therefore, the TSP can be used as a reliable means
for comparing the performances of optical computing
versus conventional computing.

Solving the TSP by checking all the possible tours
may be very expensive in terms of time complexity.1
For that reason, several heuristic methods have
shown ways to find the best TSP solution by skipping
tours predicted to be less than the best one.3 Other
methods use approximations and prefer a relatively
good solution obtained quickly rather than the best
solution, which may not be obtained within a reason-
able computation time.4 Previous research works on
optical TSP solvers mostly implemented well-known
TSP solvers by using suitable optical systems. For
example, in Ref. 5, a TSP solver based on a Kohonen
neural network4 was implemented optically. Using
these approximation or heuristic methods, a rela-
tively large number of TSP cities can be handled.

However, approximation methods do not always
find the global optimal solution, whereas heuristic
methods are able to solve the TSP for certain in-
stances only. In fact, it can be shown6 that for any
heuristic method there are easy-to-find cases for
which the TSP cannot be solved within a reasonable
time. In addition, the computation time of the heu-
ristic methods may be unexpected (depends on the
TSP instance) and may be even longer than the time
it takes to explore every possible tour in an exhaus-
tive manner (due to unsuccessful attempts to em-
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ploy optimization techniques). Thus, in applications
where deadlines must be met, such heuristics are not
a good choice, and in fact, one may prefer to use the
exhaustive search (exploring all tours) rather than
using heuristics.

The current study introduces a new method of us-
ing optics to solve the TSP of a fully-connected graph
by checking all of its feasible tours. The method is
based on an optical processor, which performs a fast
matrix–vector multiplication between a binary ma-
trix (light and dark spot matrix), representing all
TSP feasible tours, and a weight vector (gray-scale
spot vector), representing the finite weights between
the TSP cities. This system yields a vector, which
represents the lengths of the TSP tours. The matrix–
vector multiplication is performed optically by us-
ing an optical correlator.7–9 The binary matrix, used
for the matrix–vector multiplication, contains only
the TSP feasible tours. This matrix is synthesized
using a new iterative algorithm. This algorithm uti-
lizes only a small number of loops and duplicates
the relatively long vectors with no loops. In addition,
the algorithm produces the binary matrix so that this
matrix can be used to solve any TSP with the same
number or fewer cities.

Note that the TSP used here is a bounded (input-
length-restricted) TSP, and therefore the design
proposed in this paper does not imply that there is
a polynomial solution to an NP-complete problem;
i.e., the design does not imply that P � NP.1 How-
ever, the design is aimed at increasing the maximal
number of cities for which a TSP solution can still
be obtained within a reasonable and predefined
time.

Also note that more NP-complete problems can be
solved with the proposed method. For example, the
Hamiltonian path problem1 that indicates whether
there is a path with a length smaller than infinity
(which implies that part of the edges may be blocked
or has an infinite weight) is an NP-complete problem
on its own. The solution to this problem can be ob-
tained using the proposed optical system by repre-
senting each unblocked edge by a numerical 1 (light)
and each blocked edge by a numerical 0 (dark). Then,
a certain light intensity obtained in the output of the
optical system means that a Hamiltonian path exists.
Using the same proposed method, solving the Ham-
iltonian path problem is easier to implement than the
TSP since the weight vector is binary, and all that is
needed in the output of the optical system is to decide
whether there is a certain light intensity there. How-
ever, we have chosen to demonstrate the method on
the TSP, in which a gray-scale weight vector is used,
since it is a more general case from the point of view
of the optical system although both cases are con-
sidered as NP-complete problems and solving one
of these problems means (up to a polynomial-time
reduction) solving the other one as well.

The rest of the paper is organized as follows: Sec-
tion 2 presents definitions of the TSP versions con-
sidered in the paper. Section 3 explains the idea
behind the new method, whereas the optical imple-

mentation of this method is explained in Section 4.
Sections 5 and 6 present simulation and experimen-
tal results, respectively. Section 7 summarizes the
entire paper, discusses certain conclusions, and sug-
gests future research directions.

2. General Properties of the Traveling Salesman
Problem

Figure 1 shows an example of a TSP containing seven
cities. The cities are shown in this figure as circles.
The successive numbers (indices) of the cities are
written beside them. The number written on each
edge connecting a pair of cities represents the weight
(distance) between the two cities. The shortest tour in
this case is shown in the figure by using bold lines.
This version of the TSP is called the symmetric TSP
since the weight between the ith and the jth cities is
equal to the weight between the jth and the ith cities.
In this case, the number of feasible tours is given by

Ksymmetric � �N � 1�!�2, (1)

and the number of weights is given by

Msymmetric � N�N � 1��2. (2)

Fig. 1. (Color online) Example of a seven-city symmetric TSP.
The best (shortest) tour is indicated by bold lines.
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However, it is also possible to define an asymmetric
version of the TSP. In such a version, the weight from
the ith to the jth cities may be unequal to the weight
from the jth to the ith cities.2 In this case, the number
of feasible tours is given by

Kasymmetric � �N � 1� ! , (3)

and the number of weights is given by

Masymmetric � N�N � 1�. (4)

Based on Eqs. (1) and (2), it can be shown that the
number of feasible tours for a 25-city TSP is the large
number 3.1022 � 1023 for a symmetric TSP and
6.2045 � 1023 for an asymmetric TSP. Even assum-
ing that a conventional computer is able to check 109

tours per second,10 it will take more than 9.8 million
years to check all feasible tours for the symmetric
25-city TSP and twice as long for the asymmetric
25-city TSP. This is of course an unreasonable com-
putation time.

3. Description of the Optical Traveling Salesman
Problem Solver

This section presents the new approach for solving
the TSP by optics. The power of optics in this ap-
proach is realized by using a fast and parallel matrix–
vector multiplication. The current section explains
the idea behind this approach rather than the chosen
optical technique of the multiplication, discussed
later in Section 4.

A. Calculating the Tour Lengths by Using a
Matrix–Vector Multiplication

According to the proposed TSP solver, a binary ma-
trix b representing all feasible TSP tours is multi-
plied by a weight vector w representing the weights
between the TSP cities. A 1 in the ith row and in the
jth column of the binary matrix means that the ith
tour length contains the jth weight of the weight
vector. To demonstrate this, let us take, for example,
the case of the symmetric four-city TSP. In this case
�N � 4�, there are [according to Eq. (2)] Msymmetric
� N�N � 1��2 � 4 � 3�2 � 6 weights, which are w1,2,
w1,3, w1,4, w2,3, w2,4, and w3,4, and [according to Eq. (1)]
Ksymmetric � �N � 1�!�2 � 3!�2 � 3 different tours,
which are

Tour 1: City 1 → City 2 → City 3 → City 4 → City 1,

Tour 2: City 1 → City 3 → City 4 → City 2 → City 1,

Tour 3: City 1 → City 4 → City 2 → City 3 → City 1.
(5)

The length li �i � 1, 2, 3� of each of these tours is the
sum of the weights coinciding with the edges of the
tour:

Tour 1: l1 � w1,2 � w2,3 � w3,4 � w1,4,

Tour 2: l2 � w1,3 � w3,4 � w2,4 � w1,2,

Tour 3: l3 � w1,4 � w2,4 � w2,3 � w1,3. (6)

In this case �N � 4�, the weight vector can be
defined as follows:

w � �w1,2, w1,3, w1,4, w2,3, w2,4, w3,4�T, (7)

whereas the coinciding binary matrix, which has the
dimensions of �Ksymmetric� � �Msymmetric� � �3� � �6�
(three rows, six columns), is

b ��1 0 1 1 0 1
1 1 0 0 1 1
0 1 1 1 1 0

�. (8)

The result of the multiplication between the binary
matrix b [Eq. (8)] and the weight vector w [Eq. (7)] is
a length vector l representing all the lengths of the
feasible TSP tours:

l � b · w ��w1,2 � 0 � w1,4 � w2,3 � 0 � w3,4

w1,2 � w1,3 � 0 � 0 � w2,4 � w3,4

0 � w1,3 � w1,4 � w2,3 � w2,4 � 0
�

��w1,2 � w1,4 � w2,3 � w3,4

w1,2 � w1,3 � w2,4 � w3,4

w1,3 � w1,4 � w2,3 � w2,4
���l1

l2

l3
�. (9)

One can see that the final result of Eq. (9) is equiv-
alent to Eq. (6). This means that by performing this
matrix–vector multiplication, we carry out both the
multiplication between the TSP weights and the
binary matrix elements and the summation of the rel-
evant weights in order to obtain each of the feasible
TSP tour lengths. The smallest element in this column
vector corresponds to the best (shortest) TSP tour. The
same method can be implemented for any symmetric
or asymmetric TSP.

B. Synthesizing the Binary Matrix

It is assumed that a binary matrix representing all the
feasible TSP tours is given prior to the computing
stage. Therefore, we provide a new iterative algorithm
that synthesizes this binary matrix in an efficient
way. The new algorithm is adequate for the more gen-
eral case of an asymmetric TSP. This means that
it produces a Kasymmetric � Masymmetric � ��N � 1�!� �
�N�N � 1�� binary matrix and that both symmetric
and asymmetric TSPs can be handled by this algo-
rithm. The proof that this algorithm produces the
desired binary matrix is given in Appendix A. A
possible optical implementation of this algorithm is
going to be proposed in a later paper.

The algorithm starts with a binary matrix repre-
senting the case of a three-city TSP and extends the
matrix iteratively to a binary matrix that fits a prob-
lem of a higher number of cities. The algorithm is
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composed of two stages: the initialization stage and
the induction stage. In the initialization stage, we
build the binary matrix of a three-city TSP, which
contains only two feasible tours: City 1 ¡ City 2 ¡

City 3 ¡ City 1 and City 1 ¡ City 3 ¡ City 2 ¡ City
1 (since the algorithm is suited for asymmetric TSPs,
the two tours are different from each other). This
matrix is given as follows:

binitial � bN�3 �
T1

T2
�1 0 0 1 0 1
0 1 1 0 1 0�,
w1,2 w1,3 w2,1 w2,3 w3,2 w3,1

(10)

where Ti indicates the binary matrix row, which rep-
resents the ith tour. For this initial matrix, the cor-
responding tour lengths are l1 � w1,2 � w2,3 � w3,1 and
l2 � w1,3 � w3,2 � w2,1.

The order of the weights in this three-city TSP
binary matrix as well as the order of the weights in
any other binary matrix synthesized by the algorithm
is assigned according to the following rule:

w � �w1,2, w1,3, w1,4, w1,5, . . . , w1,i, . . . , w1, N,

w2,1, w2,3, w2,4, w2,5, . . . , w2,i, . . . , w2, N,
w3,2, w3,1, w3,4, w3,5, . . . , w3,i, . . . , w3, N,

w4,2, w4,3, w4,1, w4,5, . . . , w4,i, . . . , w4, N,

. . .
wN,2, wN,3, wN,4,wN,5, . . . , wN,i, . . . , wN, N�1, wN,1 �T.

(11)

The meaning of Eq. (11) is simply taking all the
weights having a second index of 1 and indicated by
an underline in Eq. (11) (for example, w3,1, w4,1, wN,1,
and so on) and inserting them instead of the weights
wi,i (for example, w3,3, w4,4, wN,N, respectively).

In the induction stage, we transform the binary
matrix representing all feasible tours for an N-city
TSP into a new binary matrix representing all feasi-
ble tours for an �N � 1�-city TSP. This is done by the
following steps:

I. Define a new empty binary matrix in the size of
�N!� � ��N � 1�N �.

II. Divide the new matrix into N horizontal sec-
tions, each section containing �N � 1�! rows.

III. In the first section of the new matrix, fill the
column belonging to the weight w1,2 (the left column)
with numerical ones.

IV. Use the old matrix to fill the rest of the first
section of the new matrix: From the old matrix, take
the column belonging to the weight wi, j and copy it
into the column belonging to the weight wi�1, j�1 in
the first section of the new matrix (for example,
w1,2 → w2,3, w2,3 → w3,4, etc.), except in the case of
j � 1 (for example, w2,1, w4,1, etc.) in which the column
belonging to the weight wi, j in the old matrix is copied
into the column belonging to the weight wi�1, j in
the first section of the new matrix (for example,
w2,1 → w3,1, w3,1 → w4,1, etc.).

V. Fill the unfilled positions in the first section of
the new matrix with numerical zeros. Figure 2(a)

demonstrates steps I–V for the transition from the
N � 3 binary matrix to the N � 4 binary matrix.

VI. Use the first section of the new matrix to fill
entirely the other sections of this matrix: Copy the
columns of the first section into the columns of the
kth section �k � 2, . . . , N�, but change the position of
the columns by swapping the indices 2 ↔ �k � 1� of

Fig. 2. Example of the induction stage of the algorithm that syn-
thesizes the binary matrix—the transition from the N � 3 binary
matrix to the N � 4 binary matrix: (a) steps I–V, (b) step VI, part
1—use section S1 of the new binary matrix to fill section S2 of this
matrix, (c) step VI, part 2—use section S1 of the new binary matrix
to fill section S3 of this matrix.
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the corresponding weights. The columns that are not
related to the weights containing these indices should
be copied unchanged. For example, if we want to fill
the second section, we use the first section but swap
the indices 2 ↔ 3 of the corresponding weights. This
means that w1,2 of the first section goes to w1,3 of the
second section, w1,3 of the first section goes to w1,2 of
the second section, w2,3 of the first section goes to w3,2
of the second section, etc. The columns that are not
related to a weight containing the indices of 2 or 3 are
copied unchanged. For instance, w1,4 of the first sec-
tion goes to w1,4 of the second section. The filling of the
second section of the N � 4 binary matrix by using
the first section of this matrix is demonstrated in Fig.
2(b), whereas the filling of the third section of the
N � 4 binary matrix by using the first section of this
matrix is demonstrated in Fig. 2(c).

A mask representing the binary matrix of a six-city
TSP is shown in the bottom of Fig. 3. In this mask,
1s are represented by white rectangles, whereas 0s
are represented by black rectangles. As indicated by
the dashed rectangle in the upper-right part of the
N � 6 mask, the easy-to-modify N � 5 mask is dis-
played there. The difference between this mask and
the exact N � 5 mask, shown in Fig. 4(a), is only a few
zero columns, which do not affect the solution any-
way. In the same way, as shown in Fig. 3, the easy-
to-modify N � 5 mask contains the easy-to-modify
N � 4 mask [the exact mask of which is shown in Fig.
4(b)], whereas the easy-to-modify N � 4 mask con-
tains the easy-to-modify N � 3 mask [the exact mask
of which is shown in Fig. 4(c)].

One of the advantages of the new algorithm is the
use of a small number (of the order of N4) of loops
and the duplications of large vectors [of the order of
�N � 1�!] without loops. This feature enables an
implementation of this algorithm in optics. This
will be presented in a future paper. Another advan-
tage of the new algorithm is that the �N � 1�-city
TSP binary matrix is contained in the N-city TSP
binary matrix. This means that once the N-city TSP
binary matrix is synthesized, it can be easily used to
solve all TSPs with N or fewer cities. These advan-
tages are in addition to the inherent advantage of
the current TSP solver, according to which after the
binary matrix of an N-city TSP is synthesized, all
N-city TSPs can be solved optically by only chang-
ing the weight vector in the matrix–vector multi-
plication and without changing the binary matrix
that is synthesized only once.

4. Analysis of the Optical System

To perform the matrix–vector multiplication de-
scribed above in an optical way, any optical matrix–
vector multiplier can be used. In this paper, we have
chosen to use the JTC (joint transform correlator)7,8

to perform this multiplication. The operation of the
JTC is divided into two main stages: the recording
stage and the reading stage.

Fig. 3. (Color online) The exact mask (white � 1, black � 0) that
represents the binary matrix of N � 6, contains the easy-to-modify
mask of N � 5. The latter mask contains the N � 4 easy-to-modify
mask, which contains the N � 3 easy-to-modify mask.

Fig. 4. Exact masks (white � 1, black � 0) that represent the
binary matrices of (a) N � 5, (b) N � 4, and (c) N � 3.
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In the recording stage, the input plane is composed
of the representations of both the weight vector w
and the binary matrix b separated from each other.7
In the binary matrix b, a 0 is represented by a black
rectangle, whereas a 1 is represented by a white rect-
angle. Note that in the optical implementation, the
binary matrices are transposed compared to the bi-
nary matrices used in Section 3. This means that in
the optical implementation, each column in the bi-
nary matrix represents a different feasible TSP tour,
whereas each row in this matrix represents a differ-
ent edge (or weight).

In the weight vector representation, the weight wi, j

is represented by a gray-scale rectangle, for which the
gray-scale level GSi, j is given as follows:

GSi, j � GSmax �
wi, j � min�w�

max�w� � min�w��GSmax � GSmin	,

(12)

where min(w) and max(w) are the minimum and the
maximum values of the weight vector, respectively,
and GSmin and GSmax are the minimal and maximal
gray-scale levels that may be used, respectively. Note
that by using Eq. (12), the lowest gray-scale level in
the representation of the weight vector is always
GSmin, whereas the highest gray-scale level is always
GSmax. In this way, the entire gray-scale range can be
used. Also notice that by using Eq. (12), higher
weights get lower gray-scale levels, whereas lower
weights get higher gray-scale levels.

Assuming that the binary matrix b is represented
on the input plane by the 2D function b centered
around the point ��Xb, �Yb� and that the weight vec-
tor w is represented on the input plane by the 2D
function w centered around the point ��Xw, �Yw�, the
input plane is mathematically expressed as the fol-
lowing:

U1�x1, y1� � �b�x1 � Xb, y1 � Yb� � w�x1 � Xw, y1 � Yw��

�

n

rect�x1 cos � � y1 sin � � n�

��2 �, (13)

where the last sum is a 1D grating with a cycle length
of �, tilted by an angle of � to the horizontal axis and
added to the input plane in order to duplicate the joint
spectra off axis and thus avoid the intense noise in-
duced at the origin of the Fourier plane by the spatial
light modulator (SLM) displaying the input plane.

The upper part of Fig. 5 illustrates the recording
stage of the JTC. The Fourier transform of the field

distribution given in Eq. (13) is obtained on the rear
focal plane of the positive lens and is given by

U2�x2, y2� � A1�B��x2, �y2�e�j2���x2Xb�y2Yb�

� W��x2, �y2�e j2���x2Xw�y2YW��

� �sinc����x2 cos � � y2 sin ��
2 �

� 

m

	�x2 cos � � y2 sin � �
m
����, (14)

where B and W are the Fourier transforms of the
input-plane functions b and w, respectively; � denotes
convolution; A1 is a constant resulting from the Fou-
rier transform; and � � 1��
f� (where f is the focal
length of the positive lens L1 and � is the wavelength
of the illuminating beam). Only the intensity of the
first diffraction order, centered around the point
�1���� cos ��, 1���� sin ��� in the Fourier plane, is
recorded as follows:

where B* and W* are the complex conjugate func-
tions of B and W, respectively, and A2 is a constant.

I2�x2, y2� � A2�B��x2, �y2�e�j2��� x2 Xb�y2Yb��W��x2, �y2�e j2���x2 Xw�y2Yw��2

� A2��B��x2, �y2��2 � �W��x2, �y2��2 � B��x2, �y2�W*��x2, �y2�e�j2���x2�Xb�Xw��y2�Yb�Yw��

�B*��x2, �y2�W��x2, �y2�e j2���x2�Xb�Xw��y2�Yb�Yw���, (15)

Fig. 5. JTC scheme.
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The lower part of Fig. 5 illustrates the reading
stage of the JTC. A transparency with an amplitude
transmittance proportional to the intensity written in
Eq. (15) is illuminated again by a plane wave and
Fourier transformed again by another positive lens
L2 (assuming for simplicity that the focal lengths of
L1 and L2 are the same). This Fourier transform is
obtained on the rear focal plane of the lens. This
plane is used as the output plane of the JTC. The
output image on this plane is given by the following
distribution:

U3�x3, y3� � �A2����b�x3, y3� � b�x3, y3� � w�x3, y3�
� w�x3, y3� � b�x3, y3� � w�x3, y3�
� 	�x3 � �Xb � Xw�, y3 � �Yb � Yw��
� w�x3, y3� � b�x3, y3�
� 	�x3 � �Xb � Xw�, y3 � �Yb � Yw���, (16)

where R denotes correlation. The first two terms of
Eq. (16) are useless, whereas the third and fourth
terms are the cross-correlation expressions between
the functions b and w. The third term of Eq. (16) is
centered at coordinates �Xb � Xw, �Yb � Yw�, whereas
its fourth term is centered at coordinates ��Xb

� Xw, Yb � Yw�. Each of these terms is a mirror re-
flection of the other term. The cross-correlation ex-
pressions between the functions b and w are actually
correlation matrices, in each of which the middle row
indicates the lengths of the corresponding tours rep-
resented by the corresponding columns of the binary
matrix. Since Eq. (12) is used for encoding the
weights (which means that higher weights get lower
gray-scale levels), the higher the peak of light in the
middle row of the correlation matrix, the shorter the
tour corresponding to it. That is why the highest peak
in the middle row of the correlation matrix corre-
sponds to the best (shortest) TSP tour. The exact
forms of the Fourier plane and of the output plane are
demonstrated in the next sections by using few TSP
examples.

The problem of extracting the highest peak from a
length vector, which contains Ksymmetric � �N � 1�!�2
elements for the symmetric case or Kasymmetric � �N
� 1�! elements for the asymmetric case, can be han-
dled by using a variable optical threshold device11 or
implementing optically a winner-takes-all neural
network.4,12 This implementation is out of the scope
of the current paper. However, as explained in the
first section, the Hamiltonian path NP-complete
problem can be solved with the same optical design by
just deciding whether there is a certain light inten-
sity in the output of the optical system and without
detecting the highest peak location. Moreover, the
solution to a #P-complete problem can be obtained
by counting the number of paths represented as
constant peaks of light in the middle row of the
correlation matrix.

As explained above, the TSP length vector is rep-
resented by the peaks displayed across the middle
row of the correlation matrix. However, the peaks
shown in the upper and lower rows of this matrix also

contain valuable information. These peaks represent
the correlations between part of a shifted version of
the weight vector and part of the binary matrix. If the
minimal gray-scale level is zero (or black), the max-
imal weight in the weight vector is represented by a
black rectangle [according to Eq. (12)]. Therefore, the
peaks appearing in the kth row below the middle row
of the correlation matrix are related to a new weight
vector obtained by shifting the original weight vector
k positions down and inserting the maximum weight
of the original weight vector k times in the beginning
of the new weight vector. For example, if the weight
vector is w � �w1,2, w1,3, w1,4, w2,3, w2,4, w3,4�T and its
maximum value is wmax, the third row below the
middle row of the correlation matrix corresponds to
the new weight vector: w � �wmax, wmax, wmax, w1,2,
w1,3, w1,4�T. This new weight vector defines a new
TSP. In a similar way, the peaks appearing in the kth
row above the middle row of the correlation matrix
are related to a new weight vector obtained by shift-
ing the original weight vector k positions up and in-
serting the maximum weight of the original weight
vector k times in the end of the new weight vector. In
the above-mentioned example, it can be said that the
second row above the middle row of the correlation
matrix corresponds to the new weight vector: w �
�w1,4, w2,3, w2,4, w3,4, wmax, wmax�T, which again defines
another new TSP. Actually, the correlation matrix
has �2M � 1� rows (where M is the number of TSP
weights). This means that besides the main TSP de-
fined in advance, for which the length vector is rep-
resented by the middle row of the correlation matrix,
there are �2M � 2� other TSPs solved simultaneously
and represented by the other rows in the correlation
matrix except the middle row. This provides an ad-
ditional advantage of using a correlator to perform
the matrix–vector multiplication rather than using
other matrix–vector multipliers.13,14

5. Simulation Results

In this section, two TSP examples are simulated. The
first simulation is designed to solve a seven-city sym-
metric TSP. In this example, the binary matrix is
synthesized by using the new algorithm explained in
Subsection 3.B, and we do not use a diagonal grating
on the input plane. This grating must be used in the
real SLM-based implementation, but it is not neces-
sary for the simulation case. The second simulation
solves a five-city TSP and imitates the real optical
experiment described in Section 6. Therefore, a diag-
onal grating is added to the input plane this time.

A. Seven-City Traveling Salesman Problem Simulation
Using the Binary Matrix Algorithm

In the first simulation, we use the proposed method to
solve the seven-city symmetric TSP shown in Fig. 1.
Using Eqs. (1) and (2), the number of feasible tours in
this case is Ksymmetric � �N � 1�!�2 � �7 � 1�!�2 �
360, whereas the number of weights in this case is
Msymmetric � N�N � 1��2 � 7�7 � 1��2 � 21. As shown
in Fig. 1, the shortest tour in this example (which is
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indicated by the bold lines in the figure) is City 1 ¡

City 5 ¡ City 7 ¡ City 3 ¡ City 6 ¡ City 2 ¡ City
4 ¡ City 1. The length of this tour is the sum of the
weights of the edges connecting the cities in the tour:
w1,5 � w5,7 � w3,7 � w3,6 � w2,6 � w2,4 � w1,4 �
2.484 � 3.097 � 0.388 � 2.775 � 3.065 � 4.904
� 5.388 � 22.101. To synthesize the binary matrix,
we use the new algorithm described in Subsection
3.B. Since this algorithm is suitable for an asymmet-
ric TSP, it generates a binary matrix with a double
number of tours (for N � 7: 720 tours) and a double
number of weights (for N � 7: 42 weights) compared
with the symmetric case. Therefore, the weight vector
is also twice as long compared to that of the symmet-
ric case. The expected results in this case are two
identical optimal solutions—a tour and its reversed-
order version. By getting these results, we actually
demonstrate the algorithm for both the symmetric
and the asymmetric cases. Although solving a sym-
metric TSP with the new binary matrix algorithm
presented in Subsection 3.B seems like a waste, let us
keep in mind that the size multiplication factors (2 for
the weight vector and 4 for the binary matrix) are
constant and independent of N. This is a worthwhile
cost, especially if N is large, due to the advantages of
the new algorithm.

As shown in Fig. 6(a), the weight vector in this case
(N � 7) has Masymmetric � 42 elements. This vector is
located at the left-upper part of the JTC input plane.
The binary matrix shown in Fig. 6(b) has Masymmetric
� 42 rows and Kasymmetric � 1 � 721 columns. This
matrix is located at the right-lower part of the JTC
input plane. Note that an additional column is added
to the left side of the original 720-column binary ma-
trix. The additional column is a reference column,
and it is used to simplify finding both the first column
and the middle row of the correlation matrix on the
output plane. This result is demonstrated next.

Only a single order appears on the JTC Fourier
plane resulting from the input plane described above.

On the other hand, the JTC output plane shown in
Fig. 6(c) contains three orders: the zero order, which
is centered around the center of the output plane as
predicted by Eq. (16), and the two side orders, which
contain the valuable information.

Figure 7 illustrates the analysis of the JTC output
plane shown in Fig. 6(c). As explained before, a ref-
erence column, added to the left side of the binary
matrix (in the JTC input plane) shown in Fig. 6(b),
appends an additional column on the side of the cor-
relation matrices as shown in Fig. 6(c). A vertical
cross section across the left column of the right cor-
relation matrix (at the x � 8917 coordinate of the JTC
output plane) is shown in Fig. 7(a). The highest peak
in this cross section appears at the y � 833 coordinate
of the JTC output plane. This peak should appear
exactly in the middle of this column since it indicates
a maximum correlation between the weight vector
and the reference column. This is the reason why
y � 833 is the middle-row coordinate of the correla-
tion matrix. Next, we look at the horizontal cross
section across the y � 833 coordinate of the JTC out-
put plane. This cross section is shown in Fig. 7(b). As
shown in this figure, this cross section contains 721
peaks coinciding with the 721 columns of the binary
matrix. Ignoring the first peak, obtained from the ref-
erence column, the highest peaks in this cross section
are for the tour indices 281 and 478. These indices in
the binary-matrix columns indicate that the first tour
contains the weights w1,4, w2,6, w3,7, w4,2, w5,1, w6,3, and
w7,5, which means the tour City 1 ¡ City 4 ¡ City 2
¡ City 6 ¡ City 3 ¡ City 7 ¡ City 5 ¡ City 1,
whereas the second tour contains the weights
w1,5, w2,4, w3,6, w4,1, w5,7, w6,2, and w7,3, which means
the tour City 1 ¡ City 5 ¡ City 7 ¡ City 3 ¡ City 6
¡ City 2 ¡ City 4 ¡ City 1. According to these
results, one tour is indeed the reversed-order tour of
the other one, and both tours are equal to the best
(shortest) tour indicated by the bold lines in Fig. 1.

Fig. 6. JTC input and output planes for the seven-city TSP shown in Fig. 1. Note that the contrast of all images in this figure is inverted
for a better visualization: (a) weight vector, (b) binary matrix including a reference column on the left, (c) output plane.
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B. Five-City Traveling Salesman Problem Simulation with
a Grating on the Input Plane

Figure 8 illustrates the five-city symmetric TSP
solved in the second simulation and also in the optical
experiment. The best (shortest) tour is indicated in
this figure by bold lines. In this simulation, we do not
use the new algorithm for synthesizing the binary
matrix because the aim here is to demonstrate the
operation of the optical correlator as a TSP solver. For
a low number of five cities, the new algorithm, which
is suitable for the more general case of an asymmetric
TSP, is not required, and since the SLM has a limited
active area, it is even not desired. The weight vector
in this case (N � 5) has Msymmetric � 10 elements. This
vector is located at the left-upper part of the JTC
input plane as shown in Fig. 9(a). The binary matrix
in this case has Msymmetric � 10 rows and Ksymmetric
� 1 � 13 columns. This matrix is located at the
right-lower part of the JTC input plane as shown in
Fig. 9(a). A high-frequency diagonal grating is added
to this input plane. To better illustrate the grating,

Fig. 9(b) shows an enlarged picture of the left-upper
portion of the binary matrix shown in Fig. 9(a). The
grating on the input plane is not necessary for the
simulation alone, but it is necessary for the SLM-
based optical experiment presented in the next sec-
tion. Figure 10 shows the Fourier plane obtained by
Fourier transforming the JTC input plane. Contrary
to the JTC Fourier plane of the first simulation, as a
result of the diagonal grating added to the JTC input
plane, the current JTC Fourier plane contains side
orders. To obtain the JTC output plane, one of the
side orders is Fourier transformed. This output plane
is shown in Fig. 11(a). It contains three orders, and
again we choose one of the side orders. An enlarged
version of the right-bottom side order is shown in Fig.
11(b). This pattern is the correlation matrix in which
the highest peak of the middle row indicates the
shortest tour of the TSP. The left column in the cor-
relation matrix is a result of the reference column
added to the left of the binary matrix on the input
plane. A vertical cross section across the left column

Fig. 7. (Color online) (a) Cross section across the left column (at x � 8917) of the correlation matrix shown in the right-lower part of Fig.
6(c). (b) Cross section across the middle row (at y � 833) of the correlation matrix shown in the right-lower part of Fig. 6(c).
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of the correlation matrix helps us find the middle row
of the correlation matrix. A horizontal cross section
across the middle row of this matrix is shown by the
dashed curve in Fig. 11(c). From this figure, it is
obvious that tour 9 represented by column 10 of the
binary matrix is the winner. If one checks this column
in the binary matrix, he sees that the tour repre-
sented by this column is composed of the following
weights: w1,2, w1,5, w2,3, w3,4, and w4,5. This means that
the best tour is City 1 ¡ City 2 ¡ City 3 ¡ City 4 ¡

City 5 ¡ City 1. This is indeed the shortest tour
indicated by the bold lines in Fig. 8.

6. Experimental Results

The experiment introduced in this section is based on
the second simulation presented in the previous sec-
tion. In the experiment, the JTC input plane shown
in Fig. 9(a) is displayed on a computer-controlled
SLM (CRL Opto XGA3, 1024 � 768 pixels). This
input plane modulates an expanded laser (Uniphase
1144�P, 17 mW, 632.8 nm, HeNe-polarized laser)
beam and Fourier transformed by a positive lens. To
magnify the image displayed on the JTC Fourier
plane, a negative lens is used right before the original
JTC Fourier plane. Since a diagonal grating is used
on the JTC input plane, there are side orders on the
JTC Fourier plane. A CCD camera (Sony XC75-CE),
located on the JTC Fourier plane and centered
around one of the side orders, records the intensity
pattern and sends it back to the computer. This in-
tensity pattern is shown in Fig. 12(a).

In the next stage, we use the computer again to
write the spatial spectrum on the SLM. Then, a pos-
itive lens is used to perform an additional Fourier
transform and a negative lens is used to magnify the
image displayed on the JTC output plane. This plane

contains three orders and each of the side orders
contains the useful information. A CCD camera lo-
cated on the JTC output plane records one of the side
orders. This recorded distribution is the correlation
matrix, in which the middle row contains a set of
peaks representing the matrix–vector product. The

Fig. 8. (Color online) Five-city symmetric TSP solved in both the
second simulation and the optical experiment. The best (shortest)
tour is indicated by bold lines.

Fig. 9. (a) JTC input plane (contrast-inverted picture) for the
five-city TSP shown in Fig. 8. (b) Enlarged picture of the left-upper
portion of the binary matrix shown in (a).

Fig. 10. JTC Fourier plane (contrast-inverted picture) for the
five-city TSP shown in Fig. 8.
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highest peak in this row coincides, as explained in
Section 4, with the best (shortest) TSP tour. Figure
12(b) shows the correlation matrix recorded on the
JTC output plane by the CCD camera. As explained
in Section 5, the first column in this matrix is ob-
tained as a result of the reference column added to
the left of the binary matrix on the JTC input plane.
A horizontal cross section is taken across the middle
row of the correlation matrix. This cross section is
shown in Fig. 11(c) by a solid curve and compared
with the simulation results marked by a dashed
curve. As shown in this figure, in spite of the moder-
ately noisy results, it is obvious that the winning
column is indeed column 10 (tour 9). In addition, the
graphs show good agreement between the simulation
and experimental results. This proves the validity of
the proposed optical TSP solver.

Since the different weights are represented by dif-
ferent gray-scale levels, the dynamic range of the

gray-scale levels on the slide limits the dynamic
range of the weights that can be represented in this
slide and hence limits the number of different tour
lengths that can be represented by the output peaks.
Many close-value weights cause many close-intensity
peaks in the output and as a result, it may be hard to
differentiate between these peaks. In fact, the mod-
ulation resolution of our SLM is 8 bits (256 linear
gray-scale levels). This means that only weights that
are able to yield integer gray-scale levels between 0
and 255 can be used. Electronic noise in the SLM and
CCD camera and the closeness to the zeroth SLM
order (especially in the JTC Fourier plane) are addi-
tional reasons for the moderate noise that occurs
across the solid curve in Fig. 11(c). Implementing the
system with film-based slides instead of SLM-based
slides may enable us to increase the number of the
gray-scale levels and also to eliminate the electronic
noise of the SLM (so less noise will be seen in the
output of the system). On the other hand, using film-
based slides inhibits the real-time properties of the
proposed system (accepting the weights in real time
and using them to perform the multiplication), since
a film-based slide representing the weights would
have to be prepared before the processing itself. In
any case, the processing of checking all TSP tours by

Fig. 11. (Color online) JTC output plane for the five-city TSP
shown in Fig. 8: (a) Entire output plane (contrast-inverted picture)
obtained by simulation. (b) Zoomed-in picture of the right-bottom
correlation matrix shown in (a). (c) Comparison between the cross
section across the middle row of the correlation matrix obtained by
simulation (dashed curve) and by experiment (solid curve).

Fig. 12. Experimental results (contrast-inverted pictures) for the
five-city TSP shown in Fig. 8: (a) One of the side orders on the JTC
Fourier plane, (b) one of the correlation matrices on the JTC output
plane.
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the proposed system is always done much faster than
by a conventional computer.

7. Discussion and Conclusion

We have presented a new optical method for obtain-
ing a parallel, fast, and reliable solution to the TSP.
The proposed design is based on an optical matrix–
vector multiplication. To perform the multiplication,
we use the JTC. The multiplication is performed be-
tween a binary matrix, representing the TSP feasible
tours, and a gray-scale weight vector, representing
the TSP weights. The result of this multiplication is
a vector containing all the lengths of the TSP feasible
tours. The minimum (but maximum in the optical
implementation) element in this vector indicates the
best (shortest) TSP tour. Using the proposed optical
design to solve a TSP of a certain rank requires that
the binary matrix has to be produced only once. To
synthesize the binary matrix, a new efficient algo-
rithm is proposed. Using the same matrix, other
TSPs of the same rank are solved by only changing
the TSP weight vector. We have proved the validity of
the proposed design by using both simulations and
optical experiments. The obtained optical experiment
results show good agreement with the simulation
results.

Note that other matrix–vector multipliers can be
used to implement the proposed method such as the
Stanford multiplier.13,14 However, we have chosen to
use a correlator as a matrix–vector multiplier since
the binary matrix tends to be very wide (a large num-
ber of tours is represented in this matrix), and it may
be advantageous to split it into a few parts, each of
which represents part of the TSP tours. Then, these
parts should be arranged in a rectangular (or other
convenient) shape so that the binary matrix plane is
exploited in an optimal way. When using a correlator,
since the weight vector is correlated with the entire
binary matrix plane, the multiplication with the re-
shaped binary matrix can be performed within a sin-
gle optical cycle. On the other hand, if a Stanford
multiplier is employed, a few cycles (or a few parallel
multipliers) may have to be used to perform the mul-
tiplication with the reshaped binary matrix.

Figure 13 shows a comparison of the computa-
tion times of the optical processor and an electronic
processor for various TSPs, both of them performing
an exhaustive search (checking all feasible solu-
tions) and ensuring predefined computation times.
Note that the vertical axis in this figure is loga-
rithmic.

To estimate the computation time of the electronic
processor, working in frequencies of the order of giga-
hertz, we have assumed that the electronic processor
can check 109 tours per second.10 This means that the
electronic processor’s calculation time in seconds can
be estimated as the number of TSP feasible tours
[�N � 1�!�2, where N is the number of TSP cities]
divided by 109.

To estimate the computation time of the optical
processor, we have assumed a 4f optical system,

which has to grow bigger as the number of TSP
cities increases. For the calculation of the optical
processor’s computation time, as shown in Fig. 13,
the binary matrix synthesis is not taken into con-
sideration since it is regarded as preprocessing.
This matrix has to be synthesized only once for the
biggest TSP, which needs to be solved, no matter
what the TSP weights are. Then, even smaller TSPs
can be solved by using the same synthesized binary
matrix. Therefore, we can regard this stage as a
prepreparation of a special optical hardware. An
efficient optical method for synthesizing this matrix
by the proposed algorithm will be addressed in our
future paper.

As can be seen from Fig. 13, TSPs that contain
approximately 15 cities can be solved by a single
iteration of the proposed optical processor within tens
of nanoseconds (can be considered as real-time per-
formance), whereas the electronic processor can per-
form this exhaustive search within tens of seconds
(cannot be considered as real-time performance).

As mentioned before, as the number of TSP cities
increases, the size of the optical system increases as
well. Therefore, there is a problem in solving TSPs
with more than 15 or 16 cities, within a single optical
iteration, and by a wavelength in the optical regime.
Decreasing the wavelength might help reduce the
size of the binary matrix and thus enable the solu-
tions of larger TSPs. Prospective implementations
might use wavelengths in the x-ray region or even in
the gamma-ray region to solve TSPs that contain a
much higher number of cities. However, this option
is quite limited due to the currently available light
sources, lenses, and SLMs. Another possible solution
to the scalability problem is to perform optical itera-
tions (or to concatenate several optical systems). In
each iteration (or in each concatenated optical sys-
tem), a different part of the binary matrix is used.
This option is also quite limited due to the relatively
low speed of the currently available SLMs. Anyway
we believe that the real-time performance of the sys-
tem (which can be obtained for small TSPs, up to 15

Fig. 13. (Color online) Comparison between the computation
times of the optical and electronic processors for various TSP
ranks.
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or 16 cities, by using the currently available technol-
ogies) together with the predefined calculation time
property signify the advantages of the proposed op-
tical method. These properties can be very useful for
many fields, such as cryptography,15 real-time satellite
route decisions, etc. In our future research, we will
show how the binary matrix algorithm can be effi-
ciently implemented in an optical way, and we will
also try to generalize the proposed TSP solver to
other hard combinatorial problems.

Appendix A: Correctness of the Binary Matrix
Algorithm

This appendix provides a proof that the new iterative
binary matrix algorithm (described in detail in Sub-
section 3.B) produces a binary matrix, which exactly
represents all feasible tours of an N-city asymmetric
TSP. To do this, three lemmas are introduced and
proven.

Lemma 1: There are exactly (N � 1)! tours in the
N-city asymmetric TSP binary matrix.

Proof: This lemma can be proven by using an in-
duction on N. For N � 3 cities, there are �N � 1�!
� �3 � 1�! � 2 feasible tours (so the three-city TSP
binary matrix contains two rows). Then, by going from
N cities to �N � 1� cities, we copy the tours (rows) of the
N-city TSP binary matrix N times. So, if we assume
that the number of tours (rows) in the N-city TSP
binary matrix is �N � 1�!, it will be N�N � 1�! � N! in
the �N � 1�-city TSP binary matrix. Q.E.D.

Lemma 2: All tours represented in the N-city
asymmetric TSP binary matrix are different from
each other.

Proof: This lemma can also be proven by using an
induction on N. For N � 3 cities, the two tours rep-
resented in the suitable binary matrix are indeed
different from each other (since we deal with an
asymmetric TSP). Then, we assume that all the tours
in the N-city TSP binary matrix are different from
each other. Step IV in the induction stage of the
algorithm (Subsection 3.A) actually transforms all
the tours containing N cities (which are different
from each other) to incomplete tours starting from
City 2 and finishing at City 1 (for example, in the
transition from N � 3 to N � 4, the tour City 1 ¡ City
2 ¡ City 3 ¡ City 1 is transformed to the incomplete
tour City 2 ¡ City 3 ¡ City 4 ¡ City 1, whereas the
tour City 1 ¡ City 3 ¡ City 2 ¡ City 1 is transformed
to the incomplete tour City 2 ¡ City 4 ¡ City 3 ¡

City 1). If the source tours are different from each
other, the incomplete target tours are also different
from each other. This means that in this step, we do
not spoil the difference property of the tours. Prior to
step IV, step III of the algorithm actually creates a
representation of the edge, which connects City 1 and
City 2. This means that the edge City 1 ¡ City 2 is
added to the beginning of the incomplete tours cre-
ated in step IV. Step III also does not spoil the dif-

ference property of the tours. This is also the case for
step V of the algorithm, in which we just add zeros,
and for step VI of the algorithm, in which we just
swap City 2 and City k � 1 �k � 2, . . . , N� until the
binary matrix is full. Q.E.D.

Lemma 3: All tours represented in the N-city
asymmetric TSP binary matrix are feasible.

Proof: Here also an induction on N is used to prove
the lemma. For N � 3 cities, we build the initial
binary matrix such that the represented two tours
are feasible. Then, we assume that the tours repre-
sented in the N-city TSP binary matrix are feasible.
Step IV in the induction stage of the algorithm (Sub-
section 3.B) just increases the indices of the cities (see
the proof of Lemma 2 for details), whereas step III
of the algorithm adds the missing edge (City 1 →
City 2). This of course produces feasible tours so that
the feasibility property of the tours is maintained.
Step V of the algorithm, which only adds zeros, and
step VI of the algorithm, which only exchanges the
roles of two cities, also maintain the feasibility prop-
erty of the tours. Q.E.D.

Theorem: The N-city asymmetric TSP binary
matrix exactly represents all feasible tours of an N-city
asymmetric TSP.

Proof: As explained in Section 2, the number of fea-
sible tours for an N-city asymmetric TSP is �N � 1�!.
Then, by using Lemmas 1–3, we can conclude that
the resulting binary matrix contains all of the (N�1)!
feasible tours and only them. Q.E.D.
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