
1

Big-Bang Simulation for Embedding Network
Distances in Euclidean Space

Yuval Shavitt and Tomer Tankel

Abstract— Embedding of a graph metric in Euclidean
space efficiently and accurately is an important problem in
general with applications in topology aggregation, closest
mirror selection, and application level routing. We propose
a new graph embedding scheme called Big-Bang Simulation
(BBS), which simulates an explosion of particles under
force field derived from embedding error. BBS is shown
to be significantly more accurate, compared to all other
embedding methods including GNP. We report an extensive
simulation study of BBS compared with several known
embedding schemes and show its advantage for distance
estimation (as in the IDMaps project), mirror selection and
topology aggregation.

I. INTRODUCTION

Knowledge of the distances between all pairs of a
group of nodes can improve the performance of many
practical networking problems, such as routing through
a subnetwork and selecting the closest mirror server.
However, measuring and to a greater extend dissemination
of this information becomes impractical even for a few
tens of nodes, since the number of node pairs is quadratic
in the number of nodes. Thus, researchers sought ways to
reduce the all pair distance representation while preserv-
ing the distance in the reduced representation as close as
possible to the original ones. Next we shortly describe two
example networking problems, where all pair distance
information is required.

Routing through a subnetwork. When routing
through an ATM sub-network, the distances between all
pairs of border nodes, i.e., nodes that are connecting the
sub-network to other sub-network, are used to compute
the shortest (or cheapest) path through the cloud [1].
For this end, each network advertises its distance matrix
in a compressed manner, and it is recommended that
the matrix representation is smaller than 3b, where b is
the number of border nodes [1]. The best compression
technique that was suggested in the past [2], [3] will be
presented later.

This research was supported by a grant from the United States - Israel
Binational Science Foundation (BSF), Jerusalem, Israel.

corresponding author: tankel@eng.tau.ac.il
The authors are with the Dept. of Electrical Engineering, Tel-Aviv

University, Israel.

Selecting the closest mirror. Recently, there was a
large interest in using distance maps of the Internet to aid
in tasks such as closest mirror selection and application
layer multicast [4], [5], [6], [7]. In the IDMaps project it
was identified that the number of possible nodes which
represent the distance map granularity is in the thousands
which makes accurate distance dissemination impractical.
Due to the practicality of the measurement process and
to reduce the representation, IDMaps suggests to use a
smaller number t of measurement points, Tracers, that
measure distances among themselves and then use them
as a reference distance map to the other network regions.

A relatively new approach to represent a network
distance matrix is to map network nodes into points in
a real Euclidean space. Such a mapping is designed to
preserve the distance between any pair of network nodes
close to the Euclidean distance between their geometric
images. Such a mapping is called an embedding and the
embedding dimention d is the dimention of the Euclidean
space. Ideally graph edge lengths are exactly embedded in
the geometric edges. However, it can be easily shown that
an exact embedding is not always possible, e.g., in case
of a tree, and in-fact, in most cases embedding introduces
some distortion. In a ’good’ embedding, the average and
maximum distance distortion over all pairs of nodes are
relatively low. The distance distortion is defined for each
pair as the maximum of the ratio between the original
and Euclidean distance and its inverse.

Outside the networking community embedding has
been used for quite a long time in many diverse research
areas. Multi Dimensional Scaling (MDS) is widely used
in areas of statistics and vision, in which its simplicity
and efficiency is an advantage over more complicated
methods. Classical metric MDS [8] develops the metric
as a symmetric bilinear form and calculates the leading
d eigene values of the corresponding matrix1. Recently
computer graphics researchers [9] suggested to use MDS
for mapping flat textures over curved surfaces with min-
imum distortion. Embedding is used extensively in bio-
informatics, and specifically for classification of protein

1Finding the leading eigenvalues of the matrix of a symmetric bilinear
form is equivalent to Singular Value Decomposition (SVD).

2

sequences into similarity families [10].
Embedding of graph edges in the Euclidean plane is

also achieved by the spring embedder algorithm for graph
drawing applications, This algorithm is a heuristic based
on a physical model which was described first in [11].
The heuristics which followed this direction, such as [12],
[13], [14], are reviewed in a recent survey [15].

Theoretical bounds on the maximal pair distortion and
the dimension of the target space were derived by Linial
et al. [16] for any discrete metric space2. Perhaps the first
use of graph embedding techniques in networking is due
to Ng and Zhang [6] who suggested to estimate Internet
host distances by embedding distances among Tracers
nodes and other network regions. Their embedding tech-
nique sought minimum of the total square embedding
errors over all nodes pairs, which is proportional to the
average pair distortion.

In this paper we present a new scheme for embedding,
based on a novel idea, utilizing notions from Newtonian
mechanics. We shall compare our scheme, Big-Bang Sim-
ulation (BBS), to other embedding methods and show that
it produces the best embedding over various parameter
choices with reasonable complexity. This is not to say
that for special cases, e.g., when the number of embedded
nodes is very small, it will outperform all other schemes,
but it will be better than any other scheme when all cases
are considered.

a) Big-Bang Simulation: BBS models the network
nodes as a set of particles, each is the ’geometric image’
of a node, that is the position of this particle in Euclidean
space. The particles are traveling in that space under the
effect of potential force field. The force field reduces the
potential energy of the particles, that is related to the
total embedding error of all particle pairs. Each pair of
particles is pulled or repulsed by the field force induced
between them depending on their pair embedding error,
that is the embedding error of the distance between them.
As a particle accelerates under the effect of the force field
it is also attenuated by simulated friction force.

The BBS scheme advantage over conventional gradient
minimization schemes, such as steepest decent and down-
hill simplex (DHS), is that the kinetic energy accumulated
by the moving particles enables them to escape the
local minima. Moreover, DHS which was used by Ng
and Zhang [6] is very sensitive to the initial vertices
coordinates. The key idea which inspired the name ’Big-
Bang Simulation’ is that all particles are initially placed
at the same point, the origin. Starting with such initial
condition BBS obtains ’good’ embedding, that is low

2Though [16] and more recent publications discusses mapping to lp,
we will concentrate only on embedding in l2 which is the most popular
in applications.

(A)

(B)

H1

T2

H2

H3

T1

T2

H2

H1

H3

T1

∆
′
3

∆
′
2 s1

s3

st

s2

∆3

s1 s3

s2

∆2

Fig. 1: Problem Statement

average distortion and quite low maximal distortion,
in several hundreds simulation iterations for input graph
sizes in the range 30 < n < 750. The above good
performance is equally achieved for to a wide range of
system friction coefficient.

Next we discuss in more details one of the applications
mentioned above for which we have applied our embed-
ding and compare it to previous results.

b) Internet Distance Maps Application: While it
was shown that IDMaps performs quite well, e.g., it
correctly points a client to the closest mirror server in
about 85% of the cases [5], it is far from being ideal.

Fig. 1 illustrates the main reason for inaccuracies in
IDMaps: In the example, client H1 estimates the network
distance ∆l to mirrors Hl, l = 2, 3 as a sum of several
measured segments, s1 + st + sl. The inaccuracy of
IDMaps estimation is larger when a nearest Tracer T1
is shared by the two nodes. For instance, in the case
depicted in Fig. 1A, the shortest network distance is
∆3 ¿ ∆2 although the smallest sum of segments is
s1 + s2 < s1 + s3. On the other hand, in the case
depicted in Fig. 1B, the client is located near the Tracer
T2, and both mirror hosts are located near another Tracer
T1. The distance st between T1 and T2 is larger than two
times the distances from the client and mirror hosts to
their nearest Tracer. Thus the distances ∆′

l; l = 2, 3 are
both dominated by st and are approximately equal to the
estimated sum s1 + st + sl.

3

Having realized that IDMaps is blind to position,
Ng and Zhang [6] suggested to use coordinate–based
mechanisms to predict Internet network distances: Tracers
are embedded in an Euclidean space and each network
region finds its image coordinates according to distances
measured from the region to some Tracers. The estimated
distance between two regions is then given by the distance
between their images in Euclidean space.

However, due to the Internet AS structure that has a
core in the middle and many tendrils connected to it
[17] embedding of distances between nodes located in
different tendrils will result in large embedding error.
Thus, we suggest a threshold criterion to select either the
Euclidean distance or the additive estimation of IDMaps.
Our criterion performs well for multiple types of input
graphs and different Tracers selection algorithms, and out-
performs both the additive IDMaps and GNP.

c) Dynamic Distance Map: Due to the dynamic
character of real networks, the calculated distance map
has to be updated to track network distance changes.
like in IDMaps [5], we expect only part of the Tracer
pair distances to be measured at every measurement
cycle. In the following, we discuss the map recalculation
due to changes. We distinguish between two scenarios:
Slow Variation, where less than 20% of the Tracer pair
distances changes, and Large Transient, where more than
20% of the Tracer pair distances are changed between
consecutive measurements.

Labovitz et al. [18] studied BGP route changes and
concluded, that in reality Internet routing is stable. They
found that over 80% of the routes change at a frequency
lower than once a day. Similarly, Paxson [19] found that
a very high percentage of the routes are stable. Given that
our measurements cycle is 15–20 minutes long, we can
expect the slow variation scenario to be the common one,
where large transient would happen rarely, due to major
failures or attacks.

Slow Variations. Such update cycles recur constantly.
In this case one does not need to recalculate the coordi-
nates from scratch and can use the previous coordinates
as the initial condition for the embedding calculation.
We verified that BBS embedding is insensitive to small
changes in the input graph, in case the pairwise field
force is given by the difference between the Euclidean
and the network pair distances (see Eq. 22). Indeed, even
after modifying as many as 20% of the input edges, and
resuming simulation from the previous particles positions,
our simulation CPU time is only .5% (for 150 node
Waxman topology) and 5% (for 15 node BA topology)
of the CPU time of the full calculation.

Large Transient. When network topology undergoes
major change, e.g., failure of major AS, we are required

to recalculate all the coordinates. In IDMaps the number
of measurements is t2 + rN , where t is the number of
Tracers, N the number of Address Prefixes(APs) and r
the number of measurement per Adress Prefix. Due to
the added accuracy of our embedding we can use fewer
Tracers than IDMaps, but we need more measurements
per AP. That is, we use smaller t values and pay with
higher r values, r = 5 compared to r = 2 in IDMaps.
This gives us a factor of 3 more measurements, which
we feel worth the added accuracy.

The rest of the paper is organized as follows. The
BBS simulation, initial condition, friction, and an ex-
ample embedding in the Euclidean plane are discussed
in next section. In Sec. III, BBS is compared to four
other methods, using simulated graphs created according
to both Waxman [20] and Barabási-Albert (BA) [21]
methods. In Sec. IV we apply BBS in two practical
applications, topology aggregation and Internet distance
maps, comparing it with previous results from [22] and
[5], [6], respectively.

II. BIG–BANG SIMULATION

In this section we shall discuss the embedding of
network distances using Big-Bang Simulation (BBS). We
develop the potential field force equation, discuss the
initial conditions for them and the effect of friction.
Finally an example of simulated metric is given, which
is embedded perfectly in the 2d Euclidean space, that is
the linear plane.

A. The Model

The vertices of the graph, the network nodes, are
modeled as a set of particles, traveling in the Euclidean
space under the affect of potential force field. Each
particle is the geometric image of a vertex. The field
force is derived from potential energy which is equal to
the total embedding error

ET (v1, v2, . . . , vn) =

n
∑∑∑

i, j=1
i>j

Eij(vi, vj) . (1)

Here vk, k = 1, . . . , n are vectors designating the
coordinates of the n network nodes in the target Euclidean
space Rd. The distance embedding error of a pair of
particles, the ’pair embedding error’ is denoted by Eij .
The field force induced between the two particles either
pulls or repulses the particle pair, aiming to reduce their
pair embedding error.

The rational behind our approach is similar to locking
an adaptive tracking loop using an increasing feedback
constant to increase sensitivity, or decrease the tracking

4

bandwidth. Our method thus comprises of several calcu-
lation phases performed sequentially. We start with an
insensitive but less optimal potential function, and as we
move along to the next phases we use a more and more
sensitive and adequate potential function. The sensitivity
of the pair error functions in each phase increases with
respect to the directional relative error Eq. (33). Numer-
ical stability is maintained, because earlier phases are
normally capable of substantially reducing the maximum
pair embedding error.

In the first phase, the induced pair field force is equal
to the difference between the Euclidean and network pair
distances. The resulting field force can be realized by
attaching an ideal spring with fixed elastic coefficient to
each pair of particles. The rest length of the spring in each
pair is equal to the network pair distance. The objective
of this phase is to find an approximate minimal energy
configuration of the system of particles. The objective of
the rest of the phases is to reduce the distortion of large
relative error edges at the price of slightly increasing the
average relative error. During each calculation phase the
particles are traveling in trajectories which tends to reduce
the potential energy of the entire system. At the end of
each phase the system approximately achieves an equi-
librium point where the potential energy is minimized.

At the beginning of the first phase, particles are placed
at the origin. The field forces for the first iteration are
chosen randomly. The initial position of particles in the
next phase is at the point where the potential energy had
achieved its global minimum in the previous phase. That
point need not be the final position of the previous phase
because the particles trajectories are stopped near but not
precisely at equilibrium.

The potential field force in each calculation phase p is
derived from a phase-specific potential energy, E〈p〉

T . The
phase pair embedding error function denoted by E

〈p〉
ij ,

assumes the form

E
〈p〉
ij (vi, vj) = F(‖vi − vj‖ , ∆ij) , (2)
for i 6= j and vi 6= vj

where ‖x‖ is the Euclidean size of vector x ∈ Rd,

i.e. ‖x‖ =
√

∑d
l=1 x

2
l , and, ∆ = (∆ij) is the distance

matrix among network node pairs (i, j) . The potential
function of the first phase E

〈1〉
T , Eq. (21), is equal to the

simple squared error used in [6].
A calculation phase consists of several iterations which

move the particles in discrete time intervals. The particles
positions and velocities calculated in the current iteration
are the input to the next iteration. An iteration begins
with calculating the field force ~Fi on each particle at
current particles positions. In all iterations, except the first

iteration of phase 1, the field forces are derived from the
potential energy (1). Next, assuming constant field forces
in time interval (t, t+ δt), apply Eq. (6-7) to calculate
the positions and velocities at time t+δt. At the end of an
iteration the new potential energy (1) and other statistics
are calculated at the new particle positions. They include
the maximum particle velocity maxi ‖v̇i‖ and maximum
symmetric pair distortion dij Eq. (24).

The phase of calculation is ended if one of the follow-
ing conditions, concerning the total energy ET and rest
statistics, are met:

1) Particles are almost perfectly embedded; The distor-
tion satisfies either ET < ε or maxi,j(dij) < 1+ε′.

2) Particles are almost at halt; The maximum particle
velocity decreases below threshold.

3) Particles are near an Equilibrium; The difference
between local minimum and maximum of potential
energy decreases below threshold.

4) Slow convergence rate of Energy; The reduction
pace of potential energy is below threshold.

5) Divergence of Particles; The maximum velocity
grows above threshold.

However, except for the first condition, which is always
checked, the other conditions are checked only after the
physical system’s time is greater than phase’s minimum
period. The minimum period for the first phase equals 15
seconds, and minimum period for the other phases is 10
seconds.

The time step δt for the next iteration is adjusted
according to the total energy and rest statistics. In the
beginning of each phase the time step is small, to prevent
the system from oscillating. The particles acquire velocity
and a definite direction, which reduces the potential
energy. The time step is gradually increased as the en-
ergy continues to decrease. There is a tradeoff between
increasing the time step for greater numerical efficiency
and keeping it small to detect and attract particles to
global minimum points of the potential energy function.
This tradeoff is handled by backtracking the particles to
their previous position if the calculated statistics indicates
minima of potential energy was skipped.

In each iteration we move all n particles, where n ≡
|V | is the number of graph vertices being embedded.
The force elements affecting each particle are induced
by all other (n − 1) particles. A single iteration thus
has a complexity of O(n2). Because the total number of
iterations I is independent of n, the overall complexity
of the method is O(In2), that is linear in the input size.

5

B. Movement Equations

The instantaneous acceleration of an object is, accord-
ing to the second movement law of Newton

~a ≡ d2

dt2
~x =

~FC

m
(3)

where ~FC is the combined force affecting the object, ~x
is its position at time t3, and m is its mass. Assuming
unit mass for all particles, m = 1, and neglecting the
variation in the combined force ~FC within a small time
interval (t, t+ δt), we have

x(t+ δt)− x(t) = ẋ(t)δt+ 1
2 ẍ(t)(δt)

2 , (4)

and
ẋ(t+ δt)− ẋ(t) = ẍ(t)δt ; (5)

where ẋ, and ẍ denotes the first and second t-derivatives,
that are the velocity and acceleration of the particle
respectively. The combined force affecting particle i at
position vi is given by ~FCi = ~Fi − ~Fri , where ~Fi is the
field force affecting this particle, and ~Fr is its simulated
friction force, discussed below. Thus we have4

v̇i(t+ δt)− v̇i(t) =
(

~Fi − ~Fri

)∣

∣

∣

t
δt (6)

vi(t+ δt)− vi(t) = v̇i(t)δt +

1
2

(

~Fi − ~Fri

)∣

∣

∣

t
(δt)2 (7)

a) Initial Conditions: The initial conditions for all
phases except the first phase are:

{

vi(t)|0 = v∗i
v̇i(t)|0 = 0

}

for i = 1, 2 . . . , n , (8)

and

E
〈p−1〉
T (v∗1 , v

∗
2 , . . .) = min

t
E
〈p−1〉
T (v1, v2, . . .) ; (9)

where p > 1 is the phase number. Thus at t = 0
all particles are at rest at the point where the potential
energy achieved its global minimum along the particles
trajectories of the previous phase. The initial conditions
for first phase are given by

{

vi(t)|0 = 0
v̇i(t)|0 = 0

}

for i = 1, 2 . . . , n

(10)

that is all particles are at rest in the origin. At the origin
however, its impossible to decompose the field force into
induced forces between pairs since vji ≡ vj − vi = 0,

3For notational convenience, we’ll omit the vector notation from
position x.

4Our particle positions are denoted by v, to emphasize they are
images of vertices, although this letter normally denotes mechanics
velocity.

0 1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

Friction Effect on Energy and Velocity

Single Particle Distortion =max(|v
i
0
j
|/∆

i
0
j
)

S
in

gl
e

P
ar

tic
le

 E
ne

rg
y

(E
i 0)

Energy µ=.7
Energy µ=0

0 1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

M
ax

im
um

 V
el

oc
ity

 o
f P

ar
tic

le
s

=
m

ax
(|v

’ i(t)
|)

Velocity µ=.7
Velocity µ=0

Fig. 2: Friction Effect on Energy and Velocity

for all i, j . At t = 0, in first iteration, we thus set the
field forces at t = 0 to

~Fi(t)
∣

∣

∣

0
=

n
∑∑∑

j=1
j 6=i0

Fx(x,∆ij)|x=‖u(i,j)‖ û(i, j) (11)

u(i, j) =
(

uij
1 uij

2 . . . uij
d

)

;

where x̂ denote the unit vector along the course of vector
x. Here uij

l , that are coordinates of vectors u(i, j), are in-
dependent random variables uniformly distributed across
the interval (0, 1]. The pair embedding error function of
phase 1 F 〈1〉 and the derived field forces are given in
section II-E below.

Substituting (11, 10) in the approximate velocity and
position equations (6-7) we find the position and velocity
of all particles at time t = δt.

C. Friction vs. Kinetic Energy

As a particle accelerates under the affect of the force
field it is also attenuated by simulated friction force. The
friction force slows the particles down, so they can be
drawn into wells of the potential energy. This effect is
illustrated by Fig. 2, comparing two runs with an identical
simulated metric input (see paragraph II-F) consisting of
20 nodes.

The figure shows the movement of one of the par-
ticles during the first calculation phase of each run.
The horizontal axis depicts the maximum ratio between
Euclidean distance and original network distance for
all node pairs attached to that one particle i0. As our
particle converges to its perfect embedding its horizontal
position approaches the distance ratio 1. The solid lines
depicts the potential energy of the particle i0, given by

6

Ei0 =
∑n

j=1, j 6=i0
Ei0j(vi0 , vj). The dashed line depicts

the maximum velocity of all particles, maxn
i=1(‖v̇i‖),

which is closely related to the total kinetic energy of
the system. The lines marked with circles (o) depict
the case where the dynamic friction coefficient is µk =
0.7, whereas the lines marked with cross (×) depict no
friction, that is µk = 0. Each marked point represents 10
mili–seconds of CPU time. The total CPU time per phase
1 is thus 200ms with friction and 160ms without friction.
When comparing the solid and dashed lines we should
recall that initially our particles were placed at the origin,
where the distance ratio equals 0. The effect of friction is
to attenuate the particles that are moving away from each
other, so that immediately as ‖vi0j‖ /∆i0j > 1, the field
force attracts the particles back to each other and they
are stopped at equilibrium of ‖vi0j‖ /∆i0j = 1. Without
friction however, the particles are moving away too fast
and the attracting field force just cause them to oscillate
forever with constant velocity.

The friction force attenuating each particle depends on
the normal force which is particle dependent, and on the
constant friction coefficients of the system. Different fric-
tion coefficients, denoted µs, µk, are accounted for static
and moving particles, respectively. More specifically,

~Fri =

{

µsNi
~̂Fi if v̇i = 0

µkNi
ˆ̇vi otherwise ;

(12)

where ẋ denote the particle velocity. The system static
and dynamic friction coefficients are constant for all
particles. When the particle velocity approaches zero
the friction force used in movement equation is only the
dynamic one. In order to prevent particle to switch its
direction during an iteration due to friction, the friction
is affecting only at the approximately part of iteration
time-interval where the velocity is opposite to it.

The normal force size Ni, represents the relative weight
of the particle. Particles with larger weight are less
affected by small changes in the positions of the rest of
the particles. In the first phase it is given by

Ni =
n

adjustFactor

n
avgavgavg
j=1
j 6=i

∆ij , (13)

whereas at phases p = 2, 3, . . . all particles have equal
relative weight

Ni =
n

normalizedAdjustFactor
∀i = 1, 2, . . . , n (14)

since the pair error functions are normalized by the pair
network distance (25) in those phases. The adjust factors
are empirical constants set to

{

adjustFactor = 7500

normalizedAdjustFactor = 100 .
(15)

Fig. 2 might suggest that BBS is sensitive to the
system friction coefficients. Thus, we checked the sen-
sitivity to system friction coefficients of the CPU time,
indicating calculation iterations count, and the maximum
and average of symmetric pair distortion dij . Due to
space limitations, we present sensitivity of results for a
fixed graph size, that is n = 50. Note that in the case
that the graph size is fixed, a calculation iteration has
constant complexity, so that the CPU time is proportional
to total number of iterations. Fig. 3 illustrates results for

0.003 0.03 0.3 3
7.9

8

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

Mechanics dynamic friction µ
k

A
vg

 C
P

U
 T

im
e(

se
co

nd
s) LAN;GX.M

TRANSIT−AS;GX.M

0.003 0.03 0.3 3
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Mechanics dynamic friction µ
k

A
vg

 M
ax

 A
−S

ym
m

et
ric

 D
is

to
rti

on

Sensitivity to Friction − Waxman Topology of 600 nodes,
exp.uniform weights [0,1000], 50 tracers, embedding dim= 7

0.003 0.03 0.3 3
1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

Mechanics dynamic friction µ
k

A
vg

 S
ym

m
et

ric
 D

is
to

rti
on

0.003 0.03 0.3 3
7.2

7.4

7.6

7.8

8

8.2

8.4

8.6

Mechanics dynamic friction µ
k

A
vg

 C
P

U
 T

im
e(

se
co

nd
s)

LAN;GX.M
TRANSIT−AS;GX.M

0.003 0.03 0.3 3
1

1.5

2

2.5

Mechanics dynamic friction µ
k

A
vg

 M
ax

 A
−S

ym
m

et
ric

 D
is

to
rti

on

BA graph of 1000 nodes, 50 tracers, uniform[0,1000] weights, embedding dim= 7

0.003 0.03 0.3 3
1

1.02

1.04

1.06

1.08

1.1

Mechanics dynamic friction µ
k

A
vg

 S
ym

m
et

ric
 D

is
to

rti
on

Fig. 3: Sensitivity to Friction Coefficients

n = 50 tracers in Waxman and BA topologies. The figure
indicates that all three values are almost indifferent to
friction in the wide range 0.003 ≤ µk ≤ 3. As for larger
and smaller graph sizes, in limited tests we’ve found
similar indifference to friction coefficients.

7

D. Potential Field Force

We shall now calculate the field force ~Fi0 , derived from
the potential energy (1), which affects one particle i0.
This force is given by the opposite of the potential energy
gradient with respect to the position of its particle vi0

~Fi0 = −∇vi0
ET (v1, . . .) = −

n
∑

i, j=1,i>j

∇vi0
Eij . (16)

Here ∇xf(·) denotes the gradient with respect to vector
x = (x1, x2, . . . , xd) defined as

∇xf ≡
(

∂
∂x1

f ∂
∂x2

f . . . ∂
∂xd

f
)

.

In (2) we’ve assumed that the pair embedding error Eij

depends only on pair Euclidean distance, so using the
chain derivation rule we get

∇vi0
Eij =

d

dx
F(x,∆ij)

∣

∣

∣

∣

x=‖vij‖

· ∇vi0
‖vij‖ , (17)

where vij ≡ vi − vj is the vector connecting between
particle positions vj and vi. Taking the derivative of its
Euclidean distance we find

∇vi0
‖vij‖ =

{

vij

‖vij‖
= −v̂ji, if i = i0 and j 6= i0

0, otherwise.
(18)

So for i 6= i0 all derivatives are zero, and the other
derivatives are the opposite of the unit vectors along the
course of the vector vji0 connecting between particle
positions vi0 and vj . Let Fij denote the magnitude of the
field force element induced on particle i0 by particle j,
along the course of vector vji0 . Then the force affecting
particle i0 equals the sum of induced forces by the other
particles

~Fi0 =

n
∑∑∑

j=1
j 6=i0

Fi0j ˆvji0 . (19)

The sign of Fij determines whether the induced force
pulls or repulse the two particles i, j. If Fij > 0, the
induced force pulls the two particles together, whereas if
Fij < 0 the induced force repulse them apart. Substi-
tuting (17), (18) in (16) and comparing with the force
expression (19), we thus have

Fi0j =
d

dx
F(x,∆i0j)

∣

∣

∣

∣

x=‖vji0‖
. (20)

Namely the field force induced on a particle by another
particle is given by the derivative of the pair embedding
error with respect to the Euclidean distance between the
particles. One can easily check that signs are correct in
the above relation. If Fij > 0 then the derivative of

pair embedding error is positive, so in order to decrease
it the Euclidean distance should be decreased. The pair
Euclidean distance is decreased by the induced field force
because in case Fii > 0, the two particles are pulled by
the field force. The case of Fij < 0 follows immediately
from symmetry.

E. Error Functions of Phases

At the first phase the pair embedding error, E〈1〉
ij is

given by

E
〈1〉
ij (vi, vj) = F(‖vi − vj‖ , ∆ij)

= (‖vi − vj‖ −∆ij)
2 , (21)

that is the squared pair distance error. The field force
induced between two particles is given by (20), that is

F
〈1〉
ij = Fx(‖vi − vj‖ ,∆ij)

= 2(‖vi − vj‖ −∆ij) . (22)

Namely in the first phase the force induced between each
particle pair is equal to 2 times the distance error of the
two particles. Substituting in expression (11) for the field
force at t = 0 we find

~Fi(t)|t=0 = 2

n
∑∑∑

j=1
j 6=i0

(‖u(i, j)‖ −∆ij)û(i, j) . (23)

The error functions we chose below for the rest cal-
culation phases are increasingly sensitive to directional
relative error Eq. (33). An equally good output should
result from choosing any similar series of increasingly
sensitive error functions.

The symmetric pair distortion dij is defined as the
maximum between the expansion and the contraction
ratios

dij = max

(‖vi − vj‖
∆ij

,
∆ij

‖vi − vj‖

)

. (24)

The pair embedding error function of the second phase
is selected as follows

E
〈2〉
ij = (dij − 1)2 (25)

Substituting Eq. (21) in the above we find

E
〈2〉
ij =

E
〈1〉
ij

min (‖vi − vj‖ , ∆ij)
2 ; (26)

So the second phase function is the square of pair
distance error, divided by the square of minimum between
embedding and network pair distance.

For last two phases we selected the following 2 func-
tions,

8

E
〈3〉
ij = exp(E

〈2〉
ij
)
3

4 −1 = exp(dij−1)
3

2 −1 , (27)

E
〈4〉
ij = expE

〈2〉
ij −1 = exp(dij−1)

2 −1 . (28)

The derivation of the induced forces in the other phases
following the first phase is given in the Appendix.

F. Example of Perfect Embedding

We take as a simple example the metric representing
the distances among fixed points in an Euclidean space.
Note that the Euclidean distances between any set of
fixed points is a metric because they satisfy the trian-
gle inequality. Moreover, this metric can be embedded
perfectly, i.e., with distortion 1 for all pairs, by choosing
the coordinates of those fixed points as geometric images
for its vertices. For ease of presentation we stick to the
simplest case of 2 dimensional space, that is the XY
plane. Next we calculate the input metric, that is the
n
2 (n− 1) Euclidean distances among these n points, and
run our BBS procedure with d = 2 on this metric.

If the embedding is accurate we would expect that
Euclidean distances would match exactly, up to the
rounding error, to the simulated metric distances. We
experimented with BBS embedding with and without
friction. The results are illustrated in Fig. 4. We scattered
n = 20 random points uniformly in a 16× 16 rectangle,
(xi, yi) ∈ (−8, +8) ×(−8, +8). For presentation clarity
we have drawn only the trajectories of the first 6 particles
out of n = 20. The trajectories on the right side are from
a run with zero friction, µk = µs = 0, whereas on the left
side they are with friction coefficient of µk = .7 and µs =
.9. Trajectories were matched to the input points using
only the shift, rotation, and reflection transformations. We
placed an enlarged marker at each of the input points, and
marked the trajectory of the corresponding particle with a
smaller marker of the same type. Indeed all trajectories on
the right, with friction, converged to their corresponding
input points. Especially interesting is one of the right
trajectories, marked with triangle pointing up, which left
the origin and then returned back home to its point at
the origin. To the contrary, none of the trajectories with
zero friction, except for the trajectory matched by the
transformation, have even come close to its corresponding
input points.

III. EMBEDDING METHOD COMPARISON

In this section we compare our BBS method to three
other Embedding methods, and also to a topology ag-
gregation method [3] and force directed graph drawing
method [12].

−10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6
Trajectories with Friction

−5 0 5 10 15
−15

−10

−5

0

5

10
Trajectories without Friction

Fig. 4: Friction Effect on simulated metric trajectories

A. Other Embedding Methods

We begin by briefly describing the four methods.
1) Semi–Definite Programming: (−−−)5 SDP is a well

known optimization technique that has drawn attention
from diverse areas. The use of SDP for graph embedding
was introduced in the seminal work of Linial, London,
and Rabinovich [16]. The SDP problem in primal stan-
dard form is

max tr(CX) s.t.

A(X) =

tr(A1X)
tr(A2X)
.
tr(AkX)

= a , (29)

where all the matrices Ai, X, and C are symmetric, and
a is a vector. The matrices Ai, C and the vector a depend
on the metric ∆, and X is the variable. A Cholesky
decomposition of the solution to the SDP problem, X =
MM t, yields the embedding coordinates matrix Mn×n.
The embedding dimension, that is the number of columns
of matrix M , is reduced by Johonson and Lindenstrauss
[23] random projection from Rn into Rd. The Matlab
code we used is due to [24]. It executes the Brian
Borchers SDP solver [25].

2) Multi–Dimensional–Scaling (−∗−): The classical
metric MDS [8] has a simple and low complexity im-
plementation. The Matlab code we used is described in
[9, Sec. 4].

3) Down-Hill Simplex (DHS) (−2−): This minimization
method is known for a very long time [26], and was re-
cently used as an embedding method in [6]. We elaborate
on our implementation, which follows the description in

5The graphs in this section use a unique marker for each method
which is given in the heading of the paragraph describing each method.
Our embedding method, Big-Bang Simulation (BBS), is marked with
’×’.

9

[6], while trying to achieve the best embedding in this
way.

The method searches the minimum of an arbitrary
function h of m variables. For this end it uses a simplex
with m+1 vertices in Rm. In each iteration the simplex
vertex with the largest h value is either reflected through
or contracted towards the opposing simplex face. In case
both h values, in reflected and contracted points, are
larger than previous h value of this vertex, the simplex is
contracted towards the opposing simplex face of the ver-
tex with the lowest h value. For Euclidean embedding,
the function h of m = nd variables, is either equal to
the total embedding error from phase 1, E〈1〉

T , Eq. (21);
or the normalized pair error used in GNP, [6]

E
〈GNP 〉
ij =

(‖vi − vj‖ −∆ij

∆ij

)2

. (30)

We experimented with both unnormalized and normalized
minimization target functions and both yielded similar
results. The results for DHS throughout this paper were
calculated with the normalized target function Eq. (30).
The initial condition of this method are the positions of
the m + 1 simplex vertices in Rm. Following [27], we
take m simplex vertices with equal length along the m
unit vectors, and the origin as m+ 1’th vertex

~sm+1 = 0 (31)
~sk = (Lδik)

m
i=1 ; k = 1, . . . m ;

where δik = 1 if i = k, or 0 otherwise. The length
L depends on the average and standard deviation of the
embedded distances (∆ij)

n
i,j=1

L = 2 ∗∆+ 6 ∗ σ∆ (32)

The C-code for our comparison is taken from [27, ch.
10 sect. 4] which also describes the DHS method in more
details.

4) MSTxRST (−•−): The MSTxRST topology aggre-
gation procedure, discussed in [22], represent a network
by an aggregated graph of at most (x + 1)n edges.
The edges in the aggregated graph are the union of a
minimum spanning tree (MST) of a clique that is built
from the shortest paths of the original graph, and x
or more Random spanning trees (RST) of this clique.
For instance in MST2RST the aggregated graph has 3n
edges. This method had the lowest distance distortion
among the aggregation methods considered in [22], and
our comparison was done using the C-code used there.

5) KK89 Force Directed Graph Drawing (−◦−−): This
algorithm was used for a different purpose, that is to
create a straight-line drawing of a graph with as much

symmetry as possible. The mechanical model of this algo-
rithm, called spring embedder, resembles our model. The
drawing process simulate a mechanical systems, where
vertices are replaced by rings, and edges are replaced
by springs. Many attempts were made to draw graphs
utilizing the spring model. However, in most of these
attempts spring connect only between neighbor vertices,
and the spring original length is set to the corresponding
edge length. We did limited testing of BBS in which
forces were considered only between neighboring nodes,
and verified it did not converge well for simulated metric
graph of medium sizes, that is 50-100 nodes. Thus, all the
embedding methods compared here take as their input the
clique built from the shortest paths of the input graph.

The first attempt to model such clique with springs, is
due to Kamada and Kawai [12]. We decided to compare
Kamada and Kawai, because their KK89 algorithm is
simple, and its embedding error function is same as ours
in phase 2, except that ∆2ij replaces the denominator in
Eq. (26). We set the algorithm constants as follows:

L0 = 10 ,

K = 1 ,

ε = 0.00001 .

The 2nd order Newton-Raphson (NR) method of KK89 is
very sensitive even with a simulated metric graph of small
size, that is 15 − 20 nodes. Thus the following changes
were made to the original algorithm

outer The outer loop of the KK89 algorithm selects a
particle with maximal gradient size ‖∇vm

ET ‖,
and executes the inner loop with that particle.
Originally this loop continues as long as the
maximal gradient size is larger than ε. However,
we stop after 1000 times, leaving particles at
their last position.

inner The inner loop of the KK89 algorithm finds a lo-
cal minimum of ET (. . . , vm, . . .) as a function
of the position vm, using 2nd order NR. Orig-
inally this loop continues until ‖∇vm

ET ‖ ≤ ε.
However we stop after 500 iterations and check
if the gradient size ‖∇vm

ET ‖ is smaller than
its size at the beginning of the loop. If yes the
outer loop continues and selects the next particle
to be moved, but otherwise we abort the outer
loop.

region We check after each iteration of 2nd order NR,
that its particle remains inside the ball with
radius L0, that is twice the size of the drawing.
In case the result point is outside the ball, we
place the particle at random point in a .001−
neighborhood of the origin.

10

B. Environment Details

The network graphs in our comparison were created
according to both Waxman [20] and Barabási-Albert (BA)
[21] methods. Only a subset of the graph nodes was
selected to be embedded according to the characteristics
of the two applications. For IDMaps [5] the subset was
selected using two Tracer placement methods, TRANSIT
or LAN (stub), which select the Tracers among the
highest or lowest degree nodes, respectively. For topology
aggregation [22], the subset includes all the border nodes
which are located on the edges of the Waxman topology
rectangle area.

To increase the confidence each experiment was con-
ducted on 10 networks using 5 sets of random weights
per network. Namely each point in the comparison graph
results from 50 embedding experiments6. For Waxman
networks, the edge weights were taken as b10exp + .5c,
where exp are i.i.d. uniformly distributed in the interval
(0, 3]. For BA networks the edge weights are i.i.d.
uniformly distributed in the interval [1, 1000].

C. Performance Metrics

The symmetric pair distortion, dij , is defined in Eq.
(24). The directional relative error, Erel, was defined by
[6, Eq. 4] as

predicted distance − measured distance

min (measured distance; predicted distance)

and for Euclidean embedding is given by

Erel ≡
‖vi − vj‖ −∆ij

min (‖vi − vj‖ , ∆ij)
2 (33)

Comparing with Eq. (26) we find that |Erel| =
√

E
〈2〉
ij ,

and substituting Eq. (25) we thus have dij = 1+ |Erel| .
The average symmetric pair distortion is given by dij =
1 + |Erel| .

As a measure of the worst-case distortion we use the
two-sided embedding distortion defined as

min

(

c1c2 : c1∆ij ≥ ‖vi − vj‖ ≥
1

c2
∆ij

)

, (34)

over all node pairs i, j = 1, . . . , n; i 6= j.
An alternative measure, defined by Linial et al. [16],

is the one-sided distortion

min

(

c : ∆ij ≥ ‖vi − vj‖ ≥
1

c
∆ij

)

, (35)

over all node pairs i, j = 1, . . . , n; i 6= j. The above
measures are comparable since from linear contraction

6However, for n = 450 tracers, we performed only 5×1 embeddings,
due to their large space and time requirements

of our coordinates we get c = c1c2 . However this
contraction increases the other metric dij .

D. Comparison Results

A different marker depicts each of the embedding
methods compared in following figures. Lines with no
marker depict SDP method, lines marked with ’∗’ de-
pict MDS method, ’+’ depict DHS method, ’•’ depict
MSTxRST method, and ’◦’ depict KK89 method. Some
figures uses different line styles to distinguish between
the several tracer placement methods shown on the same
picture.

a) Symmetric Pair Distortion: We compare the ac-
curacy of the five methods using the complementary
symmetric distortion distribution over all pairs of the 50
embedding experiments. Fig. 5 compares all methods, ex-
cept from topology aggregation(MSTxRST), for the LAN
placement methods of n = 15 Tracers in the BA topology
which is typical to the IDMaps application discussed
here-on. BBS is more accurate than DHS, having smaller
complementary distribution along the entire range of the
distortion. For example the probability P (dij > 1.1), is
.11 for BBS vs. .15 for DHS, i.e., a 35% increase. SDP is
much worse than both. The insets in the top right depicts
the non-symmetric pair distortion in the lower graphs
and the embedded distance in the upper graphs, both
vs. original pair distances. The SDP embedding contract
nearly all edges whereas DHS and BBS has similar mass
of contracted and expanded edges. Fig. 6 compare MDS,
KK89 and BBS for the LAN and TRANSIT placement
methods of n = 150 tracers in the Waxman topology. We
rule out SDP and DHS as practical embedding methods
for large n due to thier long running time and sensitivity,
respectively. The accuracy of BBS is much better than
MDS, e.g., P (dij > 1.3), is .05 for LAN-BBS and
TRANSIT-BBS vs. .6 for LAN-MDS and .999995 for
TRANSIT-MDS.

b) Embedded Graph Size: Fig. 7 depicts the per-
formance of the different methods as a function of the
number of embedded nodes. For n > 30 or 70 the long
running times of SDP or KK89 and high sensitivity of
DHS exclude them from the comparison. For BBS we
depicted in dotted lines, a linear fit of the average CPU
time graph which indicates that BBS has complexity
Cn2, ∀n ∈ [10, 450]. The value of C calculated for
Pentium-IV 2.0Ghz processor is 6 × 10−4. The BBS
embedding distortion is the lowest for all graph sizes
except for n ≥ 150 where MST6RST distortion is
smaller e.g. for n = 450, the distortions are 4 vs. 15.5
respectively. BBS has the lowest average symmetric pair
distortion in all graph sizes. The symmetric pair distortion

11

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4
0

10

20

30

40

50

60

70

80

90

100

Symmetric Pair Distortion

co
m

pl
em

en
ta

ry
 d

is
tri

bu
tio

n

BA Graph 1000 nodes, placement method LAN, 15 tracer nodes, dim= 7

LAN;BBS
LAN;GNP
LAN;SDP
LAN;KK89
LAN;MDS

0 2000 4000
0

1000

2000

3000

4000

E
m

be
dd

ed
 d

is
ta

nc
e

100 102 104
0.6

0.8

1

1.2

1.4
BBS

0 2000 4000
0

1000

2000

3000

4000

100 102 104
0.6

0.8

1

1.2

1.4

P
ai

r D
is

to
rti

on

GNP

0 2000 4000
0

1000

2000

3000

4000

100 102 104
0

0.5

1

1.5
SDP

0 2000 4000
0

1000

2000

3000

4000

100 102 104
0

1

2

3
KK89

0 2000 4000
0

1000

2000

3000

4000

100 102 104
0

0.5

1

1.5

2

Original distance

MDS

Fig. 5: BA Symmetric Pair Distortion

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

10

20

30

40

50

60

70

80

90

100

Symmetric Pair Distortion

co
m

pl
em

en
ta

ry
 d

is
tri

bu
tio

n

Waxman Graph 1000 nodes, 150 tracers, uniform weights 10[0,3], embedding dim= 7

LAN;BBS
LAN;MDS
LAN;KK89
TRANSIT;BBS
TRANSIT;MDS
TRANSIT;KK89

Fig. 6: Waxman Symmetric Pair Distortion

of MST6RST and SDP are not comparable with the rest
of the methods, since all MST6RST edges are expanded
and most SDP edges are contracted.

c) Embedding Dimension: Fig. 8 illustrates the ef-
fect of the embedding dimension on the BA topology with
n = 15 Tracers. Naturally, the performance of all methods
improves when the embedding dimension increases. For
the BA topology the knee point, where the improvement
diminishes, is at d = 7 as was found by Ng and Zhang
[6].

For d < 7, the performance gap between all other
methods and ours is significant, as can be seen by the two
right graphs of Fig. 8. The difference is larger for the two-
sided embedding distortion. The larger performance gap
in embedding distortion is explained by the improvement

101 102 103
10−3

10−2

10−1

100

101

102

103

num of tracers

A
vg

 C
P

U
 T

im
e(

se
co

nd
s)

LAN;BBS
LAN;GNP
LAN;SDP
LAN;KK89
LAN;MDS
LAN;M2R

101 102 103

2

4

6

8

10

12

14

16

18

num of tracers

E
m

be
dd

in
g

D
is

to
rti

on
 (t

w
o−

si
de

d)

BA Graph 100 − 4000 nodes, 10 − 450 tracers, uniform weights [1,1000], embedding dim= 7

101 102 103
1

1.2

1.4

1.6

1.8

2

2.2

num of tracers

A
vg

 d
ij −

 S
ym

m
et

ric
 P

ai
r D

is
to

rti
on

Fig. 7: Performance Metrics vs B-A Graph Size

0 5 10
0

1

2

3

4

5

6

7

8

embedding dimension d

A
vg

 C
P

U
 T

im
e(

se
co

nd
s)

LAN;BBS
LAN;GNP
LAN;SDP
LAN;KK89
LAN;MDS
TRANSIT;BBS
TRANSIT;GNP
TRANSIT;SDP
TRANSIT;KK89
TRANSIT;MDS

2 4 6 8 10
1

2

3

4

5

6

7

8

9

10

embedding dimension d

E
m

be
dd

in
g

D
is

to
rti

on
 (t

w
o−

si
de

d)

BA Graph 1000 nodes, 15 tracers, uniform weights [1,1000], embedding dim= 2 − 10

2 4 6 8 10
1

1.2

1.4

1.6

1.8

2

2.2

embedding dimension d

A
vg

 d
ij −

 S
ym

m
et

ric
 P

ai
r D

is
to

rti
on

Fig. 8: Performance Metrics vs B-A Embedding Dimen-
sion

of large distortion pairs in the last two phases of our
calculation. Although the main objective of SDP is to
reduce the embedding distortion, with LAN placement it
has a larger embedding distortion compared to both DHS
and BBS for all dimensions. However, with TRANSIT
placement for d ≥ 7, the SDP distortion is the smallest.
The results for the Waxman topology with n = 70 and
150 Tracers are similar, and are thus omitted. However,
for n > 30 the sensitivity of DHS rules it out as a viable
method.

d) Input Graph Sensitivity: We tested embedding of
the BA and Waxman topologies with 15 TRANSIT and
150 BORDER nodes respectively. We either increased

12

or decreased the weights of 15% of the input edges by
10%, and disconnect or reconnect an additional 5% of
the edges. The input graph is embedded first with regular
initial conditions, and the modified graph is embedded
with initial positions of the unmodified graph embedding.
The test is repeated 3 times where the initial positions in
each embedding are the output positions of previous em-
bedding. We compare the accuracy and complexity of the
3 embedding by embedding the 3 modified graphs again
with regular initial conditions. With unnormalized square
embedding error, Eq. (21), the sensitivity of BBS is low.
The calculations from previous graph position achieves
comparable performance metrics with 13 iterations and
.01 − .15 CPU seconds for BA or Waxman topology
respectively, compared to 200 − 1000 iterations and
.15 − 10 CPU seconds, with regular initial conditions.

IV. APPLICATIONS

A. Topology Aggregation

Topology aggregation is used in hierarchical networks
to compactly represent the cost of traversing a network
between every possible entrance and exit points. If the
aggregation decreases the cost of an edge it means that
a routing application that is using the aggregated view to
find a route in the network may select a path with a higher
cost than it expects. It is generally considered undesirable
to receive such bad news, since, e.g., if the traversal cost
means delay we may choose a route which violates the
application bound. Thus, for topology aggregation we
seek an embedding that favors length increase over length
decrease.

The MSTxRST aggregation procedure (Sec. III-A.4)
insures that an edge length in the aggregation is never
smaller than the original. However, in the embedding
methods we discussed so far some distances are con-
tracted while other are expanded. A transformed embed-
ding in which no edges are contracted (or expanded)
was discussed in Sec. III-C. The problem with the trans-
formed embedding is that it increases the average pair
distortion which is, of course, important for aggregation
performance.

An alternative way to favor expansion in our em-
bedding is an introduction of a price factor denoted
P , P À 1, in the definition of pair embedding error
functions

Ê
〈p〉
ij (vi, vj) =

{

E
〈p〉
ij (vi, vj) if ‖vi−vj‖

∆ij
≥ 1

PE
〈p〉
ij (vi, vj) otherwise.

(36)

Thus, the weight of a contracting pair in the total embed-
ding error will be larger than the weight of an expanding
pair. Such a price factor can be directly incorporated into

the DHS method, but should pose inherent difficulty for
MDS since it is not linear. We introduce the price factor
into our calculation at the end of the first calculation
phase. Particles are placed at the best position of the
first phase, and then moved by a modified field force
incorporating the price factor P 1; P À P 1 > 1. As
particles reach near an equilibrium of the modified field
force the price factor is increased again, and particles
continue from the previous equilibrium point to the next
equilibrium. This procedure is repeated until the price
factor is increased to the final value P . In the rest of
the phases, the calculation continues with the field force
which directly incorporates P .

Fig. 9 illustrates the effect of the price factor P =
512 on our embedding method compared to embedding
without it, i.e., P = 1. The middle graph shows that the
price factor decreases our two sided embedding distortion
by approximately half at d = 2 and for d > 2 its effect
is only modest. However, with the price factor, the av-
erage symmetric pair distortion increases approximately
by 2%, which translates to 10% increase of the absolute
relative error. Here the knee point where the improvement
diminishes is at d = 6. Although at d = 2 (or x = 1) our
performance is worth than MSTxRST, at d = x+ 1 ≥ 3
it supersedes MSTxRST.

2 4 6 8
100

101

102

embedding dimension d=x+1

A
vg

 C
P

U
 T

im
e(

se
co

nd
s)

BBS
MxR
KK89
BBS P=512

0 5 10
100

101

102

embedding dimension d

E
m

be
dd

in
g

D
is

to
rti

on
 (t

w
o−

si
de

d)

Waxman Graph 600 nodes, 70 BORDER tracers, uniform weights 10[0,3], embedding dim= 2 − 8

0 5 10
1

1.1

1.2

1.3

1.4

1.5

embedding dimension d

A
vg

 d
ij −

 S
ym

m
et

ric
 P

ai
r D

is
to

rti
on

Fig. 9: Waxman Symmetric vs. A-Symmetric Aggregation

Fig. 10 compares the symmetric pair distortion his-
tograms of MST3RST and BBS with d = 4 and P = 512.
The insets in the top right illustrates nicely the effect of
the price factor which is to force all pairs to expand rather
then contract. Almost all the pairs of BBS are above the
y = x line in the upper inset and the y = 1 line in the
lower inset.

13

Fig. 10: Aggregation Distortion Histograms

B. Internet Distance Estimation

IDMaps [5] is a project that aims to build a global
architecture for Internet host distance estimation and
distribution. The architecture is based on Tracers, which
are instrumentation boxes, that are placed in the Internet.
Each Tracer measures distances to other Tracers and
to address prefixes (AP) that are close to it. These
measurements are multicast to topology servers which
combine them to an estimated map of the Internet.

Euclidean embedding yields smaller relative distance
errors compared to IDMaps, especially when both nodes
are sharing a single nearest Tracer (see Fig. 1A). The
main problem with Euclidean distance estimation is un-
derestimation of large measured distances. That is an
inherent problem when embedding the BA topology, as
all shortest path between distant nodes must go through
a small number of core nodes [17]. Indeed, due to the
triangle inequality, the Euclidean distance between distant
nodes is bound to be smaller then their shortest path
which goes through the core nodes. On the other hand,
IDMaps sum of segments accurately estimate the longer
paths going through the core nodes, as in Fig. 1B.

Throughout this section we’ve estimated distances in
BA graphs, using 3 sets of random weights per each of
5 simulated BA graphs. Fig. 11 compares the additive
estimation of IDMaps with Euclidean embedding by GNP
and BBS methods using the directional relative error,
Eq. (33). We only experimented with LAN and TRANSIT
Tracer placement methods, illustrated on the top and
bottom pictures respectively, because LAN placement is
the most easy to deploy, and TRANSIT placement yields
the best mirror selection performance [5]. We used 15

Tracers and measured distances from each host to all 15
Tracers, that matches the conditions of the similar figures
in [6]. The groups of vertical lines 75ms apart depicts
the distribution of relative errors for measured distances
belonging to the 75ms interval. The lines marked with
square, upright triangle, and circle markers depicts GNP,
IDMaps, and BBS, respectively. The method marker is
placed at the average relative error point, and the star
marker depicts the median. Each line has whiskers at the
5, 25, 75, and 95 percentiles.

For each placement and calculation method we ran-
domly picked 150 nodes out of the 1000 graph nodes in
each of the 15 simulated BA graphs. We estimated the
distance from all other graph nodes to each picked node,
that is a total of 2, 247, 750 distance pairs per method..
The thick lines depict the overall count of measured pair
distances per interval.

With both placement methods, IDMaps has longer
percentile lines compared to GNP and BBS, for ∆ < 400.
The cause for such large errors is explained in Fig. 1
where the distance ∆ is much smaller than IDMaps es-
timation. The median and average of IDMaps TRANSIT
placement are much lower than its LAN placement, and
at interval 225 < ∆ < 3000ms its median is 0 and
average is below 0.5 and decreases rapidly to 0 as distance
increases. BBS’s median and average approaches 0 for
both LAN and TRANSIT placement at ∆ > 225ms. For
∆ > 700ms in TRANSIT or 1500ms in LAN however
our median and average becomes negative down to −0.3
at ∆ ≥ 2500. IDMaps additive estimation has larger
positive relative errors than Euclidean estimation for short
distances, but is more accurate for longer distances.
Therefore best distance estimate is by selecting Euclidean
estimation for short distance, and IDMaps additive esti-
mation for longer distances, based on a threshold of the
Euclidean distance. Unfortunately, the optimum threshold
point changes for different placement methods, graph
topologies, and ranges of random edge weights.

An alternative for selecting between Euclidean and
IDMaps additive estimations is using the ratio R between
the two, given by

R =
Euclidean distance

IDMaps additive
, (37)

and the estimated distance is selected as follows
{

Euclidean distance if R < RTh

IDMaps additive otherwise.
(38)

Fig. 12 illustrates the improvements in accuracy of our
estimation compared to IDMaps additive, with threshold
RTh = 0.45. As in the previous figure we used 15 Tracers
and measured distances from each host to all 15 Tracers.

14

0 500 1000 1500 2000 2500
−1

0

1

2

3

4
BA Graph 1000 nodes, 15 LAN tracers, 15 tracers/AP, embedding dim= 7

∆

D
ire

ct
io

na
l E

rr
or

GNP
BBS
IDMaps
∆ Freq.

0 500 1000 1500 2000 2500
−1

0

1

2

3

4
BA Graph 1000 nodes, 15 TRANSIT tracers, 15 tracers/AP, embedding dim= 7

∆

D
ire

ct
io

na
l E

rr
or

GNP
BBS
IDMaps
∆ Freq.

Fig. 11: Directional Relative Error (stand-alone)

One could have selected the closet mirror as the one
with smallest distance estimated by (38). Such naive
approach however doesn’t maintain the ordering among
estimated distances, as some were estimated by additive
IDMaps and some as Euclidean distances. We calculate
the ratio

R′ =
mink {Euclidean distance}
mink {IDMaps additive} , (39)

where the minimum among mirrors for either method is
achieved by the closet mirror denoted by k〈·〉min. The closet
mirror is then selected as

{

k
〈Euclidean〉
min if R

′ < R
′
Th

k
〈IDMaps additive〉
min otherwise.

(40)

We compared the mirror selection accuracy of IDMaps
additive with BBS using the selection criterion of (40)
with R′

Th = .45, i.e., the same threshold value used for
distance estimation. Following [5] we randomly selected
10 mirror servers and estimated the closet mirror to each
of the rest of the graph nodes acting as clients. The
client decision is considered correct if it selects the mirror
whose client-mirror distance is at most twice the optimal

distance. For each mirror group rank accuracy is defined
as the percentage of correct client decisions. Fig. 13 illus-
trates the average cumulative distribution function (CDF)
of rank accuracy. Each mark is the average of the CDFs
from the 15 simulated graphs, where each CDF consists
of 300 mirror group experiments performed on a single
graph. The number of Tracer distance measurements per
AP, is specified in the legend after the ′×′ mark, and is
depicted with increasing marker sizes.

The accuracy of additive IDMaps improves with 3
Tracer measurements compared to 1. Using TRANSIT
placement, IDMaps doesn’t improve with more than 3
Tracer measurements, and using LAN Tracer placement
it becomes even less accurate with the additional measure-
ments. The accuracy of our threshold selection however,
improves with each additional Tracer measurement. With
3 measurements it is more accurate then additive IDMaps
for both LAN and TRANSIT placement. With 15 mea-
surements for LAN placement it is nearly as accurate as
IDMaps for TRANSIT placement, pointing clients to the
closest mirror server with confidence 0.95 in 94% of the
cases, compared to 88% of the cases of additive IDMaps
for LAN placement.

15

0 500 1000 1500 2000 2500
−1

0

1

2

3

4
BA Graph 1000 nodes, 15 LAN tracers, 15 tracers/AP, embedding dim= 7

∆

D
ire

ct
io

na
l E

rr
or

BBS
IDMaps
∆ Freq.

0 500 1000 1500 2000 2500
−1

0

1

2

3

4
BA Graph 1000 nodes, 15 TRANSIT tracers, 15 tracers/AP, embedding dim= 7

∆

D
ire

ct
io

na
l E

rr
or

BBS
IDMaps
∆ Freq.

Fig. 12: Directional Relative Error (Thld. selection)

V. CONCLUDING REMARKS

We presented a novel scheme for embedding a graph
metric in a d-dimensional Euclidean space, and showed
that with one exception (SDP for very small networks
with LAN placement and high dimension) BBS was
always the most accurate embedding scheme. In addition,
BBS execution time is second only to MDS, but MDS
has a stability problem in large graphs and works well
only with high d. In addition, MDS is not applicable to
topology aggregation as we stated before. Finally, BBS is
insensitive to its only arbitrary parameters, the dynamic
and static friction coefficients, as demonstrated in Fig. 3,
thus no fine tuning is required.

We demonstrated the efficiency of our scheme for
important networking problems: topology aggregation,
closest mirror selection, and distance estimation. We
believe our method can be applied to other problems as
well, such as routing in ad-hoc networks, and efficient
building of peer-to-peer networks and application layer
multicast.

ACKNOWLEDGEMENT

We would like to thank Udi Ashkenazi for implement-
ing the SDP embedding algorithm and for his insight
of SDP. We also thank Cheng Jin for providing the
IDMaps simulation code, and for helping us integrating
new features into it.

APPENDIX

We derive the expressions of field forces from error
function of rest calculation phases. Following (20) we
derivate the error function of phase 2 (25), and using
(22) we get

F
〈2〉
ij =

dE
〈2〉
ij

d‖vji‖

= F
〈1〉
ij

{

∆−2
ij if ‖vji‖ > ∆ij

‖vji‖−2 if ‖vji‖ < ∆ij

= 2(‖vji‖− ∆ij)

{

1
∆ij

if ‖vji‖ > ∆ij

∆ij

‖vji‖
3 if ‖vji‖ < ∆ij

.

(41)

16

85 90 95 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank Accuracy

C
om

pl
em

nt
ar

y
D

is
tri

bu
tio

n
Fu

nc
tio

n

BA Graph 1000 nodes, 15 LAN tracers, embedding dim= 7

LAN;BBS×01
LAN;IDMaps×01
LAN;BBS×03
LAN;IDMaps×03
LAN;BBS×05
LAN;IDMaps×05
LAN;BBS×08
LAN;IDMaps×08
LAN;BBS×10
LAN;IDMaps×10
LAN;BBS×15
LAN;IDMaps×15

93 94 95 96 97 98 99 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Rank Accuracy

C
om

pl
em

nt
ar

y
D

is
tri

bu
tio

n
Fu

nc
tio

n

BA Graph 1000 nodes, 15 TRANSIT tracers, embedding dim= 7

TRANSIT;BBS×01
TRANSIT;IDMaps×01
TRANSIT;BBS×03
TRANSIT;IDMaps×03
TRANSIT;BBS×05
TRANSIT;IDMaps×05
TRANSIT;BBS×08
TRANSIT;IDMaps×08
TRANSIT;BBS×10
TRANSIT;IDMaps×10
TRANSIT;BBS×15
TRANSIT;IDMaps×15

Fig. 13: Mirror Selection Accuracy (Thld. selection)

Similarly for phase 3 and 4 whose error functions are
defined in (27-28), and substituting (41) we get

F
〈3〉
ij = 3

4

F
〈2〉
ij√

dij−1
E
〈3〉
ij (42)

= 3
2

√

dij − 1

{

1
∆ij

if ‖vji‖ > ∆ij

∆ij

‖vij‖
2 if ‖vji‖ < ∆ij

F
〈4〉
ij = F

〈2〉
ij E

〈4〉
ij . (43)

REFERENCES

[1] “Private network – network interface specification version 1.0
(PNNI),” Tech. Recomendation, The ATM Forum technical
committee, Mar 1996, AF-PNNI-0055.000.

[2] Whay Chiou Lee, “Topology aggregation for hierarchical routing
in ATM networks,” Computer Communication Review, vol. 25,
no. 2, pp. 82 – 92, Apr. 1995.

[3] B. Awerbuch, Y. Du, B. Khan, and Y. Shavitt, “Routing through
networks with hierarchical topology aggregation,” Journal of
High-Speed Net., vol. 7, 1998.

[4] W. Theilmann and K. Rothermel, “Dynamic distance maps of the
internet,” in Infocom, 2000, Tel Aviv, Israel.

[5] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang, “IDMaps: A global internet host distance estimation
service,” IEEE/ACM Trans. Networking, Oct. 2001.

[6] T. Ng and H. Zhang, “Predicting internet network distance with
coordinates based approaches,” in Infocom, 2002.

[7] E. Cronin, S. Jamin, C. Jin, A. Kurc, D. Raz, and Y. Shavitt,
“Constrained mirror placement on the internet,” IEEE J. Select.
Areas Commun., vol. 20, no. 7, pp. 1369–1382, Sept. 2002.

[8] W.S. Togerson, “Multidimensional scaling of similarity.,” Psy-
chometrika, vol. 30, pp. 379–393, 1965.

[9] G. Zigelman, R. Kimmel, and N. Kiryati, “Texture mapping
using surface flattening via multidemnsional scaling,” IEEE Trans.
Visual. Comput. Graphics, 4-6 2002.

[10] G. Yona, N. Linial, and M. Linial, “ProtoMap: automatic classi-
fication of protein sequences and hierarchy of protein families,”
Nucleic Acids Research, vol. 28, pp. 49–55, 2000.

[11] P. Eades, “A heuristic for graph drawing,” Congressus Numeran-
tium, vol. 42, pp. 149–160, 1984.

[12] T. Kamada and S. Kawai, “An algorithm for drawing general
undirected graphs,” Information Processing Letters, vol. 31, no.
1, pp. 7–15, 1989.

[13] Thomas M. J. Fruchterman and Edward M. Reingold, “Graph
drawing by force-directed placement,” Software - Practice and
Experience, vol. 21, no. 11, pp. 1129–1164, 1991.

[14] R. Davidson and D. Harel, “Drawing graphs nicely using simu-
lated annealing,” ACM Transactions on Graphics, vol. 15, no. 4,
pp. 301–331, 1996.

[15] I. Herman, G. Melancon, and M.S. Marshall, “Graph visualization
and navigation in information visualization: A survey,” IEEE
Trans. Visual. Comput. Graphics, vol. 6, no. 1, pp. 24–43, 2000.

[16] N. Linial, E. London, and Yu. Rabinovich, “The geometry of
graphs and some of its algorithmic applications,” Combinatorica,
vol. 15, pp. 215–245, 1995.

[17] L. Subramanian, S. Agarwal, Jennifer Rexford, and R. Katz,
“Characterizing the internet hierarchy from multiple vantage
points,” in IEEE Infocom 2002, June 2002.

[18] Craig Labovitz, G. Robert Malan, and Farnam Jahanian, “Internet
routing instability,” in ACM SIGCOMM’97, Aug. 1997.

[19] Vern Paxson, “End-to-end routing behavior in the Internet,”
IEEE/ACM Trans. Networking, vol. 5, no. 5, pp. 601 – 615, Oct.
1997.

[20] B.M. Waxman, “Routing of multipoint connections,” IEEE J.
Select. Areas Commun., vol. 6, pp. 1617–1622, 1988.

[21] Réka Albert and Albert-László Barabási, “Topology of evolving
networks: local events and universality,” Physical Review Letters,
pp. 5234–5237, 11 Dec. 2000.

[22] B. Awerbuch and Y. Shavitt, “Topology aggregation for directed
graphs,” IEEE/ACM Trans. Networking, Feb. 2001.

[23] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz
mappings into a hilbert space,” Contemporary mathematics, vol.
26, pp. 189–206, 1984.

[24] E. Ashkenazi, “Experiments with low-distortion low-dimensional
embeddings of graphs into normed spaces,” Graduate project,
E.E.-Systems Department, Tel-Aviv University, Apr. 2002.

[25] B. Borchers, CDSP 3.2, A library for semidefinite programming,
Dec. 2000, http://www.nmt.edu/∼borchers/csdp.html.

[26] J.A. Nelder and R. Mead, “A simplex method for function
minimization,” Computer Journal, vol. 7, pp. 308–313, 1965.

[27] Numerical Recipes Software, Numerical Recipes in C: The art of
scientific computing, Cambridge University Press, 1992.

