
Computer Communications 186 (2022) 166–173

F
S
a

b

A

K
D
I
O

1

t
s
b
o
f
d

a
h
f
(
t
f
t
f

t
i
c
s
n

h
R
A
0

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

ast and lean encrypted Internet traffic classification
angita Roy a,b, Tal Shapira b,∗, Yuval Shavitt b

Thapar Institute of Engineering and Technology, India
School of Electrical Engineering, Tel-Aviv University, Israel

R T I C L E I N F O

eywords:
eep learning

nternet traffic classification
DE

A B S T R A C T

Identifying the type of a network flow or a specific application has many advantages but becomes harder
in recent years due to the use of encryption, e.g., by VPN. As a result, there is a recent wave of solutions
that harness deep learning for traffic classification. These solutions either require a rather long time (15–60
Seconds) of flow data or rely on handcrafted features for solutions that classify flows faster.

In this work, we suggest a novel approach for classification that extracts the most out of the two simple
yet defining features of a flow: packet sizes and inter-arrival times. We employ a model that uses the inter-
arrival times to parameterize the derivative of the flow hidden-state using a neural network (Neural ODE). We
compare our results with a solution that uses the same data without the ODE solver and show the benefit of
this approach.

Our results can classify flows based on 20 or 30 consecutive packets taken from anywhere in one direction
of a flow. This reduces the amount of traffic between the sampling point and the analyzer and does not require
matching between two directions of the flow. As a result, our solution can classify traffic with good accuracy
within a few seconds, and we show how to combine it with a more accurate (and a slower) classifier to achieve
(mostly) fast and accurate classifications.
. Introduction

To improve the quality of service (QoS), network traffic classifica-
ion plays an important role in emphasizing the emergence of several
ervices provided by the network. The quality includes content, time,
andwidth, speed, and money. The services demand proper monitoring
f network traffic. Besides QoS implementation, traffic classification
ocuses on resource management and pricing, malware and anomaly
etection, criminology, and traffic engineering.

However, due to the growing trends of Internet traffic encryption
nd an increase in usage of VPNs and Tors, this task is becoming much
arder. Up until a few years ago, most of the presented techniques
or classifying encrypted traffic relied on extracting statistical features
also called feature extraction) from a traffic flow. This is followed by
he process of feature selection to eliminate irrelevant features, and
inally use shallow methods of supervised learning, such as decision
rees, SVM (Support Vector Machine), and KNN (K-Nearest Neighbors)
or the classification.

Over the past few years, advances in deep learning [1] have driven
remendous progress in many fields due to its auto-learning ability. The
ncreasing availability of GPUs considerably helps in the calculation of
omplex matrix manipulation and mathematical calculations. As a re-
ult, many solutions for traffic classification are based on deep learning
etwork models: RNN, CNN, and auto-encoder (see our related work

∗ Corresponding author.
E-mail addresses: sangita.roy@thapar.edu (S. Roy), talshapira1@mail.tau.ac.il (T. Shapira), shavitt@eng.tau.ac.il (Y. Shavitt).

section). In these approaches, data from the flow packets are collected
over a certain period of time, and then classification is applied to the
flow of packets. Flow-based deep learning reached impressive results
for many traffic classification tasks recently. However, they suffer from
several engineering problems. Some approaches are required to obtain
both directions of a communication session, which are not always
available, and require considerable efforts to store and match. Other
requires obtaining many features and/or obtaining a few features over
a long period of time, which requires sending these many data items
from the tapping point to the analysis server. Finally, in many cases, we
need fast classification that will allow us to adjust the flow treatment
quickly.

This paper introduces ODENet combined with LSTM to obtain a
fast classification of network traffic using only two features from one
direction of the communication: packet size and inter-arrival time. A
sufficient number of packets for the classification can be obtained in a
few seconds or even below one second. As a result, the solution lends
itself to easy engineering. LSTM is used to solve the vanishing gradient
problems which arise in RNN. The ODENet accelerates the numerical
precision and provides parameterized derivatives of the hidden state
using a neural network.

Our contribution is a generic approach for Internet traffic classi-
fication that takes advantage of all time and size-related information
ttps://doi.org/10.1016/j.comcom.2022.02.003
eceived 31 October 2021; Received in revised form 4 February 2022; Accepted 5
vailable online 11 February 2022
140-3664/© 2022 Elsevier B.V. All rights reserved.
February 2022

https://doi.org/10.1016/j.comcom.2022.02.003
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2022.02.003&domain=pdf
mailto:sangita.roy@thapar.edu
mailto:talshapira1@mail.tau.ac.il
mailto:shavitt@eng.tau.ac.il
https://doi.org/10.1016/j.comcom.2022.02.003


S. Roy, T. Shapira and Y. Shavitt Computer Communications 186 (2022) 166–173

m

w
d
p
c

2

m
a
[
a
a

t
1
l
a
u
p
a
o

c
u
a
c
w
p
m

2
e
s
a
o
p
S
t
e
t
a
b
c

a
n
M
r
i

available in a network flow instead of using information from manually
extracted features. Moreover, our model can deal with a small number
of packets from a unidirectional flow instead of the entire bidirectional
session. We use the same architecture for all the experiments in the
paper — we did not make any attempt to gain extra accuracy by
adapting the architecture to the exact problem.

Another advantage of our approach is that we do not rely on
the packet payload content and thus do not breach privacy. Unlike
methods that classify based on the packet payload content [2–5], our
storage requirement is quite minimal, since, for each packet, we need to
transfer only two words of data from the forwarding engine to where
the analysis is done, which makes real-time classification feasible. We

ake our code publicly available.1
The rest of the paper continues as follows. After describing related

ork in Section 2, we describe the dataset in Section 3. Section 4
escribes the ODE method and our deep learning architecture. Section 5
resents our experiments and their results. Finally, the last section
oncludes the paper.

. Related work

Internet traffic classification problems can be divided into three
ain categories: 1. Categorizing Internet traffic [6] into classes such

s Video, VoIP, File Transfer, etc., 2. identifying Internet applications
7–9] such as YouTube, Facebook, Skype, etc., and 3. identifying user
ctions [10] in a specific application like sending a text message on
pple iMessage [11] or watching a specific video on YouTube [12,13].

Different classical approaches were used in the past for Internet
raffic classification: 1. Payload based traffic classification methods [14,
5], also called deep packet inspection (DPI). These methods are prob-
ematic because they invade privacy, are computationally expensive,
nd are incapable of dealing with most of today’s traffic due to the
se of encryption and 2. Port-based methods — based on TCP/UDP
acket header fields values, mainly the port number. These methods
re fast and simple, but their efficiency declined with the increased use
f dynamic and default ports.

Therefore, due to the mentioned problems, many statistical and ma-
hine learning-based methods [16] have been studied. These methods
sually are done by manually extracting size and time-related features
nd applying complex patterns or supervised learning algorithms as
lassifiers. Besides these, some works present hybrid approaches [17],
hich combine a classifier based on the well-known port numbers,
acket payload signatures, and more. We will focus on describing the
ost relevant works.

Many works focused on the process of feature generations [18–
0]. These methods usually created a long list of handcrafted features
xtracted from bidirectional flows, such as RTT (round-trip delay time)
tatistics, packet size statistics, inter-arrival time statistics, frequencies,
nd so on. Then some [20] applied feature selection techniques to
btain an optimal feature set. Based on the obtained features, they ap-
lied machine-learning classifiers such as Naive Bayes Kernel estimator,
VM, decision trees, etc. More recently, Gil et al. [21] used statistical
ime-related features such as flow bytes per second, inter-arrival time,
tc. They achieved accuracy levels above 80% by generating bidirec-
ional flows of Non-VPN and VPN traffic and applying C4.5 and KNN
s classifiers. Zhang et al. [22,23] used 20 simple unidirectional flow-
ased features and applied a bag of words (BoF) technique to model
orrelation information in traffic flows of the same application.

Payload-based methods were revisited in recent years with new
pproaches. Wang et al. [2,3] converted each packet payload to a
ormalized byte sequence and used it as input for a neural network.
oreover, using 1-D Convolution Neural Networks, the classification

esults over the ISCX VPN–nonVPN traffic dataset [21] have been
mproved relative to previous works. Lotfollahi et al. [24] applied

1 https://github.com/talshapira/ODE-Flow.
167
almost the same method using CNNs and auto-encoders over the same
dataset and achieved good performance. Aceto et al. [25,26] introduced
a multimodal deep learning framework for mobile encrypted traffic
classification. Their framework uses both payload data and protocols
fields for the classification.

Payload-based methods work very well on the test data, however,
because these methods rely on raw data (bytes values), they may be
overfitted to the bytes structure of the specific applications and not be
able to generalize the characteristic of the internet categories to classify
unknown applications. Moreover, these methods are problematic when
encryption techniques are used, e.g., with VPN or Tor. Wang et al. [3]
success in VPN classification is due to the usage of training data and
test data based on the same encryption method and encryption keys.

Qin et al. [27] were among the first to understand the need to
avoid manually extracted features. They used the Renyi cross-entropy
to identify the similarity between a payload size distribution (PSD) of
a given flow with the one generated for a specific application. Ertam
and Avci [28] used a genetic algorithm (GA) for feature selection, then
they applied a wavelet kernel-based extreme learning machines (ELM)
over a dataset that contained 7 classes of regular traffic (non-VPN), and
achieved accuracy over 95%.

Some recent works involved the use of deep learning. Lopez-Martin
et al. [5] used a recurrent neural network (RNN) combined with a
CNN to classify traffic based on 6 features for each packet in the
session. They achieved an accuracy of over 95% using port information
and 84% without port information, which emphasized the weakness
of their method. Chen et al. [29] converted flow data to a picture of
the flow parameter auto-convolution and fed it to a neural network.
However, they also used side information such as the target IP and had
not described their method sufficiently to enable comparison. Zhang
et al. [30] proposed an autonomous model update scheme to be able
to handle new applications. Pacheco et al. [31] emulated satellite
communications and presented a framework to classify heterogeneous
Internet traffic with deep learning techniques for this type of communi-
cation. Iliyasu and Deng [32] addressed the challenges associated with
establishing ground truth labels of large encrypted traffic datasets and
introduced a semi-supervised approach using DCGAN. Their approach
achieved good accuracy with a very small number of labeled samples.

A recent work by Shapira and Shavitt [33] suggested FlowPic, a
transformation of the packet size and inter-arrival times into a picture,
and used standard image classification deep learning to classify the
Flow pictures into categories with high accuracy. They also classified
in the same way applications.

3. The dataset

In order to examine our method, we use labeled datasets of packet
capture (pcap) files from the Uni. of New Brunswick (UNB): ‘‘ISCX VPN-
nonVPN traffic dataset’’ (ISCX-VPN) [21] as well as our a small packet
capture (TAU) as used in [33].

ISCX-VPN consists of captured traffic with a total of 7 traffic types
(VoIP, Chat, etc.) for both regular traffic sessions (Non-VPN) and
sessions over VPN.

Since the UNB datasets do not contain enough flows for chats,
we use the TAU’s captured traffic of Whatsapp web chat, Facebook
chat, and Google Hangout chat. We use a dataset only from the five
categories that contain enough samples: Video, VoIP, Browsing, Chat,
and File Transfer. For these categories, we have used two encryp-
tion techniques: non-VPN (Regular) and VPN (for all classes except
Browsing). Notice that our categories are the same as in [33], but
differ slightly from those suggested in [21,34]. Thus, we chose [33]
to compare our results with. All the applications that were captured to
create the dataset, for each traffic category and encryption technique,

are shown in Table 1.

https://github.com/talshapira/ODE-Flow


S. Roy, T. Shapira and Y. Shavitt Computer Communications 186 (2022) 166–173
Table 1
List of captured protocols and applications for each traffic category and encryption
technique.

Non-VPN VPN

VoIP Google Hangouts, Facebook,
VoipBuster, Skype

Google Hangouts,
VoipBuster, Skype

Video Google Hangouts, Facebook,
Netflix, Vimeo, YouTube, Skype

Netflix, Vimeo, YouTube

File Transfer FTPS, SCP, SFTP, Skype FTPS, SFTP, Skype

Chat Google Hangouts, Facebook, AIM
Chat, Skype, ICQ, WhatsApp Web

Google Hangouts, Facebook,
AIM Chat, Skype, ICQ

Browsing Firefox, Chrome –

Table 2
The number of session blocks of regular traffic category.

Session length Classes

VoIP Video File Transfer Chat Browsing

10 7170 7481 7049 4889 7401
20 7334 6955 7178 2303 7347
30 6883 6770 6892 1379 6752

Table 3
The number of session blocks of VPN traffic category.

Session length Classes

VoIP Video File Transfer Chat

10 7270 7276 7235 5147
20 7168 7488 6989 2518
30 7157 7078 7004 1703

3.1. Dataset preparations

The dataset is made of captured files, each corresponds to a specific
application, a traffic category, and an encryption technique. However,
all these captures also contain sessions of different traffic categories
since while performing one action in an application, many other ses-
sions occur for different tasks simultaneously. For example, while using
VoIP over Facebook, there is another STUN session taking place at the
same time for adjusting and maintaining the VoIP conversation, as well
as an HTTPS session of the Facebook site. To prevent these kinds of
mistakes in our dataset, we follow the process done in [33] and keep
only the flows that belong to the correct category. We split each pcap
file into unidirectional flows, where each flow is defined by a 5-tuple
{source IP, source port, destination IP, destination port, protocol}.

3.2. Data processing

To increase the number of training examples, we divide each unidi-
rectional flow by the number of packets. For every class vs. all (VoIP,
Video, File_Transfer, Chat, and Browsing), session blocks are of 10, 20,
and 30 packets. Table 2 shows the number of session blocks of five
classes of regular traffic, and Table 3 shows the number of session
blocks of four classes of VPN traffic. For each packet, we generate two
features to obtain the following time-series features: relative time and
packet length. We normalized the data by assuming a maximum value
of 1500 Bytes (which is the Ethernet MTU value) for packet length.

4. Methods

4.1. Preliminaries

Recurrent Neural Networks or RNNs [35] are a class of Artificial
Neural Networks (ANNs) for processing sequential data. Unlike ANNs,
RNNs perform the same task for every element of a sequence, with the
output being dependent on the previous computations and is produced

using the same update rule applied to the previous outputs.

168
The Long Short Term-Memory neural networks, or LSTMs, that was
first introduced by Hochreiter and Schmidhuber [36], are a specific
kind of RNNs that are capable of learning long-term dependencies.
These networks are composed of units called memory cells that have
an internal recurrence (a self-loop), in addition to the outer recurrence
of the network.

RNN and LSTM are very popular deep learning models to analyze
time-series data, but still, their performance is not very promising.
A Residual network (ResNet) specifies a discrete sequence of finite
transformation at hidden layers, but in contrast, Ordinary Differential
Equation Network (ODENet) defines a continuous transformation of the
hidden state. The neural ODE is first proposed by Chen et al. [37] and
it focuses on the connection between neural network and differential
equation.

4.2. Background

4.2.1. Ordinary Differential Equation Network (ODENet)
Ordinary Differential Equation Networks, also known as

ODENets that were first introduced by Chen et al. have a major role
in the field of deep learning time series data analysis. ODENet is
comparatively a new family in deep learning networks. The numerical
concept of ordinary differential equations is embedded into the deep
learning methods to build a framework to handle massive time-series
data reliably and efficiently.

The transformation into the hidden state of Residual networks can
be expressed as:

ℎ𝑡+1 = ℎ𝑡 + 𝑓 (ℎ𝑡, 𝜃𝑡) (1)

where ℎ𝑡 denotes the 𝑡th layer’s hidden value, 𝑡 ∈ {0,… , 𝑇 } and ℎ𝑡 ∈
R𝐷.

In ODE, the above expression can be written as a Euler discrimi-
nation of differential equation considering more layers are added and
smaller steps are considered:
𝑑ℎ𝑡
𝑑𝑡

= 𝑓 (ℎ𝑡, 𝑡, 𝜃) (2)

Neural networks with an ODE has several advantages:

1. ODE does not save all intermediate states of the hidden layers;
hence it is memory efficient.

2. The Euler method, which is used in RNN or ResNet, achieves
only first-order accuracy, but on the other hand, ODE can
achieve higher accuracy.

3. ODE requires a smaller number of parameters since ODE uses a
continuous function of time.

4. ODE performs well for accuracy and stability in small datasets
as well as large ones.

5. Neural ODE is useful for irregular time series data.

4.3. The architecture

Our goal is to design an architecture that can classify Internet flows
using a small number of packets. We wish to use only packet sizes
and inter-arrival times. Thus, we introduce an LSTM classifier that is
preceded by an ODENet.

LSTM networks are composed of units called memory cells that have
an internal recurrence (a self-loop), in addition to the outer recurrence
of the network. Each cell contains three ‘gates’; 1. an input gate to
control the flow of inputs into the memory cell, 2. an output gate to
control the output flow of cell activations into the rest of the network,
and 3. a forget gate, which controls the self-loop weight and set it to a
value between 0 and 1 via a sigmoid unit.

The LSTM model is fed by the output from the ODENet as depicted
in Fig. 1. We used a classical LSTM with 32 hidden dimensions. The
LSTM layer is following Eq. (1). The 𝑛 outputs (𝑛 is the number of
packets taken from a flow) of the ODENet are fed as features to



S. Roy, T. Shapira and Y. Shavitt Computer Communications 186 (2022) 166–173

s

l

c
f
s
t
a

5

o
i
d
o
w
t

5

g
a
o
o
m
e

5

c
w
t
B

5

r
c
f

5

u
r
a

w
p
o

𝐴

Fig. 1. ODE-LSTM hybrid layer.

Table 4
The architecture of our LSTM-ODE network.

Layer Size

LSTMx2: Input: 𝑛, 1
Output: 𝑛, 32

FC-1: Output: 128
FC-2: Output: 64
FC + Softmax: Output: 5

the LSTM. The ODENet starts working with a single batch and its 𝑛
uccessive data is labeled.

As depicted in Table 4, our LSTM-ODE architecture comprises four
ayers, not counting the input. Our input layer consists of 𝑛 entities,

which is the number of packets taken from a flow, followed by 2 LSTM
layers with 32 hidden dimensions. Then we apply a sequence of 2 fully-
connected (FC) layers of size 128 and 64, respectively. Finally, our
output layer is the softmax layer, whose size depends on the number
of classes: 5 for regular traffic classification and 4 for VPN traffic
classification.

For comparison purposes, three different models have been used: 1-
input classical LSTM, 2-input classical LSTM, and an LSTM with ODE.
For a fair evaluation, we use the same architecture for the three models
with the following changes:

1. For the 1-input architecture which we used for comparison, we
simply replaced the input to the LSTM: instead of using the
ODENet output, we use the packet size itself.

2. For the 2-input architecture, we doubled the input size to the
LSTM model and used as features the packet size and inter-
arrival times.

4.4. Training specification

The training is done by optimizing the categorical cross entropy [38]
cost function, which is a measure of the difference between the softmax
layer output and a one-hot encoding vector of the same size, represent-
ing the true label of the sample. For the optimization process, we use
169
SGD (Stochastic gradient descent) optimizer. The loss function is defined
as:

𝐿(𝑧(𝑡1)) = 𝐿(∫

𝑡1

𝑡0
𝑓 (𝑧𝑡, 𝑡, 𝜃) 𝑑𝑡)

= 𝐿(𝑂𝐷𝐸(𝑧(𝑡0), 𝑓 , 𝑡0, 𝑡1, 𝜃))
(3)

We build and run our networks using the PyTorch [39] library. To
ompare reliably between all sub-problems results, we run our network
or 25 epochs (which took between 5 to 10 min for an epoch) of bath
ize 1 and save the result which achieve the best accuracy during the
raining process. In all experiments, our ODENet reaches convergence
fter running on 10 to 15 epochs.

. Experiments and results

In this section, we report our experimental results. Due to the lack
f standard datasets, the comparison of our results to previous works
s challenging. Even the few papers that used the same datasets as we
id [3,7,21,34] are not always directly comparable due to the selection
f categories, evaluation criteria, etc. Moreover, unlike previous works,
e created balanced datasets for reliable evaluation. We will discuss

hese differences while presenting the results.

.1. Labeling datasets for different problems

After creating the pre-processed dataset, as mention before, we
enerate a balanced sub-dataset for each sub-problem. For class vs.
ll datasets, the specific class is equal to the number of samples in all
ther classes together, such that the ratio between the quantities of the
ther classes remains constant. We do it using a random undersampling
ethod [40] in order to preserves the initial distribution of samples in

ach class.

.1.1. Class vs. All
A class vs. all dataset consists of samples of the specific traffic

ategory, and an equal number of samples of all other traffic categories
ith an equal share. We construct class vs. all datasets for 2 encryp-

ion techniques: non-VPN or Regular and VPN (for all classes except
rowsing).

.1.2. Multiclass
We examine multiclass classification problem for Traffic catego-

ization, which consists of an equal number of samples for all traffic
ategories that were mentioned before. We create multiclass datasets
or 2 encryption techniques: non-VPN and VPN.

.2. Evaluation criteria

As mentioned before, each of the above sub-problems was trained
sing its own training set and evaluated using its own test set. We
andomly split each sub-problem dataset; we use 80% of the samples
s a training set and 20% of the samples as a test set.

We use the accuracy criteria to evaluate our model performance,
hich is defined as the proportion of examples for which the model
roduces the correct output of all predictions made. A formal definition
f the accuracy for multiclass classification is

𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑

𝑖∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑇𝑃𝑖
∑

𝑖∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠(𝑇𝑃𝑖 + 𝐹𝑃𝑖)
,

where 𝑇𝑃𝑖 and 𝐹𝑃𝑖 are the true positive and the false positive of
the class 𝑖, respectively. For visualizing the results of the multiclass
problems, we use the normalized confusion matrix (Figs. 5 and 6).
In a confusion matrix, each row represents the actual class while
each column represents the predicted class. In a normalized confusion
matrix, each diagonal value represents the recall of the corresponding
class, defined by 𝑅𝑐 = 𝑇𝑃 (where 𝐹𝑁 is the false negative).
𝑇𝑃+𝐹𝑁



S. Roy, T. Shapira and Y. Shavitt Computer Communications 186 (2022) 166–173

f
a
t
a

f
p
r
o

t

Table 5
One class vs. all regular traffic accuracy (%).

No. of Method Classes

Packets VoIP Video File_Transfer Chat Browsing

10
ODE 94.42 76.26 85.28 89.9 67.06
1_input 78.18 71.94 83.44 70.20 77.26
2_input 83.77 72.30 83.64 80.3 62.21

20
ODE 96.53 86.38 92.15 85.62 72.41
1_input 83.78 87.77 87.09 64.05 82.6
2_input 89.58 84.44 87.09 65.36 60.28

30
ODE 99.44 80.94 90.47 84.69 78.13
1_input 86.30 79.15 64.40 76.53 77.94
2_input 81.67 79.60 65.56 79.59 69.85

– FlowPic 99.6 99.9 98.8 96.2 90.6

Table 6
One class vs. all VPN traffic accuracy (%).

No. of Method Classes

Packets VoIP Video File_Transfer Chat

10
ODE 97.62 80.17 86.64 90.62
1_input 77.58 82.52 88.18 78.54
2_input 85.71 82.52 88.36 83.15

20
ODE 94.54 78.22 41.91 86.7
1_input 88.32 99.17 40.17 63.76
2_input 90.39 98.96 41.04 76.61

30
ODE 99.50 84.35 71.94 96.1
1_input 89.11 84.01 76.02 68.83
2_input 91.79 83.67 76.19 81.17

– FlowPic 99.9 99.9 99.9 99.2

5.3. Results on class vs. All problems

In many cases, there is a need to distinguish a single traffic category
from the rest. Tables 5 and 6 show a summary of the results of class vs.
all classification problems by comparing different traffic categories with
and without VPN, as described in Table 1. For each traffic category,
our ODENet was trained over 2 training sets according to different
encryption techniques. Each one of the trained networks was tested
on 2 test sets, consisting of samples from the trained class with one
of the above types of encryption techniques: Non-VPN (Regular) and
VPN. Table 7 shows the average results of each one of the encryption
techniques based on the number of packets.

To quantify the contribution of the ODENet, we compare the
ODENet results in Tables 5 and 6 with an LSTM that uses the same
architecture and the same data but without the ODE. We used the
packet data in two ways. In the experiments whose results are labeled
as ‘1-input’, we use the packet sizes as input to the LSTM architecture
that is fed in the ODENet experiment. In the experiments whose results
are labeled as ‘2-input’, we use the packet sizes and the inter-arrival
times2 as input to the LSTM architecture that is similar to the one
ed in the ODE experiment but double its size to accommodate the
dditional parameter. There is a significant difference between the
hree experiments for almost all cases: ODE is usually a clear winner,
nd ‘2-input’ is usually doing better than ‘1-Input’.

In General, the ODE results are very good with the correct classi-
ication of more than 4 out of every 5 flows, using only 10, 20, or 30
ackets from one direction of the flow. However, when comparing these
esults with a solution like FlowPic [33] that reported average accuracy
f 97.0% for non-VPN (Reg) traffic and 99.7% for VPN (not including

browsing traffic, as mentioned before), they do not seem attractive. We
note that the FlowPic system requires at least 15 Seconds to make an
evaluation while the ODE solution requires less than a Second for VoIP,

2 Note that while in ODE we use the relative time, for the ‘2-input’ we use
he inter-arrival time for better results.
170
Fig. 2. Accuracy vs. classification ratio for video traffic identification using ODE.

Table 7
One class vs all average accuracy (%).

Method Encryption No. of Packets

10 20 30

ODE Non-VPN 82.58 86.62 86.73
VPN 88.76 75.34 87.97

1-input Non-VPN 76.20 81.06 76.86
VPN 81.71 72.86 79.49

2-input Non-VPN 76.44 77.35 75.25
VPN 84.94 76.75 83.21

Video, and FTP flows and a median of 10 s or less for chat and browsing
(for 20 packets), as presented in Fig. 4.

One way to improve the classification accuracy is to use the ODE
results only if the classification confidence is above a threshold. Fig. 2
shows this trade-off for video traffic when we use 20 packets. Table 5
shows that the accuracy is 86.4% for regular traffic when we classify
all the flows. Fig. 2 shows that if we are willing to classify 60%
of the flows, our classification accuracy is over 91%. For VPN, the
improvement is even better, if we are willing to set the threshold
such that we classify 78.4% of the flow, our accuracy improves from
78.4% to 96.6%, and we can set it such that we get 100% accuracy for
classifying almost half the flows. Note that for VPN traffic, we reach
100% accuracy for almost 40% of the data, while for regular traffic,
this happens for less than 20%. We will revisit this point later when
discussing multi-class categorization.

5.4. Results on traffic categorization problems

Fig. 5 shows the confusion matrix for traffic categorization for the
case of 20 packets. The average accuracy for regular traffic is about
75% and for VPN traffic 80% (see Fig. 3. Note that for regular traffic
with 20 and 30 packets classification cannot reach 100% accuracy, thus
the lines do not start from the beginning of the abscissa). Clearly, VoIP
and Video are easier to classify than the rest. The lack of browsing
flows in the VPN dataset may explain the higher accuracy for this
experiment than the one for regular traffic. The corresponding results
for solutions that examine longer windows of time are better, for exam-
ple, FlowPic [33] achieves accuracies of 85% and 98.4%, respectively.
However, FlowPic requires at least 15 s of data, while here, we can
obtain classification at a tenth of the time.

We would like to be able to enjoy both fast classification and
high accuracy. To this end, we suggest the following algorithm, we
first classify flows based on ODE but require a high threshold for
classification and classify only sessions with a sufficient number of
packets in a few seconds. If this threshold is reached and the flow has
a sufficient number of packets, we have a fast and accurate classifica-
tion. Otherwise, we wait for slower and more accurate solutions. For
example, wait 15 s and classify based on FlowPic.

Fig. 3 shows the trade-off between the percentage of flows that
are classified with ODE and the achieved accuracy. For the 20 packet

example, for evaluation of regular traffic, we get 75% accuracy by



S. Roy, T. Shapira and Y. Shavitt Computer Communications 186 (2022) 166–173

Fig. 3. Accuracy vs. classification ratio for Multiclass traffic classification using ODE.

Fig. 4. Time duration statistics for 20-packet flows.

Fig. 5. Confusion matrix of Regular and VPN Multiclass.

Fig. 6. Confusion matrix of Regular and VPN Multiclass using 0.8 as a minimal threshold.

171



S. Roy, T. Shapira and Y. Shavitt Computer Communications 186 (2022) 166–173
classifying all packets. Using a threshold, we can increase the accuracy
to 85% by classifying only 60% of the packets, and if we are willing to
classify only half the packets, we get a 90% accuracy.

Fig. 6 shows the confusion matrix when we set the threshold at 0.8.
At this point, we classify over 51% of the packets for regular traffic
and above 50% of the packets for VPN traffic. Comparing the confusion
matrix in Figs. 5 and 6 there is a clear improvement in accuracy with
the threshold.

6. Conclusion

In this paper, we introduce a novel approach for encrypted internet
traffic classification, which is based only on time and size-related
information. The main advantage of our approach is the ability to get
a classification based on only 10–30 packets, namely within a few sec-
onds. It is also easy to deploy since it only requires two words for each
packet, its size, and inter-arrival time. Finally, since the classification
is only based on meta-data and does not require access to the packet
payload, it is easier to deploy from the legal aspects, as well.

Our classification accuracy is very good for some applications, like
identifying VoIP, but less for other applications. Thus, we suggest a
hybrid approach where we classify fast a portion of the flows with high
accuracy and wait for additional packets to arrive for the rest.

Our results may also be used for other types of problems where
events are not evenly spaced in time, for example, in the study of
cascading failures in the interdependent networks [41].

CRediT authorship contribution statement

Sangita Roy: Conception and design of study, Acquisition of data,
Analysis and/or interpretation of data, Writing – original draft, Writing
– review & editing. Tal Shapira: Conception and design of study,
Acquisition of data, Analysis and/or interpretation of data, Writing –
original draft, Writing – review & editing. Yuval Shavitt: Conception
and design of study, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This research was funded in part by a grant on cyber research from
the Israeli PMO and the Blavatnik Interdisciplinary Cyber Research
Center at Tel Aviv University, Israel. All authors approved the version
of the manuscript to be published.

References

[1] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015)
436–444.

[2] Z. Wang, The applications of deep learning on traffic identification, in: BlackHat
USA, 2015.

[3] W. Wang, M. Zhu, J. Wang, X. Zeng, Z. Yang, End-to-end encrypted traffic
classification with one-dimensional convolution neural networks, in: 2017 IEEE
International Conference on Intelligence and Security Informatics (ISI), 2017, pp.
43–48.

[4] M. Lotfollahi, R.S.H. Zade, M.J. Siavoshani, M. Saberian, Deep packet: A novel
approach for encrypted traffic classification using deep learning, 2017, CoRR
abs/1709.02656.

[5] M. Lopez-Martin, B. Carro, A. Sanchez-Esguevillas, J. Lloret, Network traffic
classifier with convolutional and recurrent neural networks for internet of things,
IEEE Access 5 (2017) 18042–18050, http://dx.doi.org/10.1109/ACCESS.2017.
2747560.

[6] S. Zander, T. Nguyen, G. Armitage, Automated traffic classification and appli-
cation identification using machine learning, in: The IEEE Conference on Local
Computer Networks 30th Anniversary (LCN’05)l, 2005, pp. 250–257.
172
[7] B. Yamansavascilar, M.A. Guvensan, A.G. Yavuz, M.E. Karsligil, Application
identification via network traffic classification, in: 2017 International Conference
on Computing, Networking and Communications (ICNC), 2017, pp. 843–848.

[8] J. Muehlstein, Y. Zion, M. Bahumi, I. Kirshenboim, R. Dubin, A. Dvir, O.
Pele, Analyzing HTTPS encrypted traffic to identify user’s operating system,
browser and application, in: 2017 14th IEEE Annual Consumer Communications
Networking Conference (CCNC), 2017, pp. 1–6.

[9] S. Rezaei, X. Liu, Multitask learning for network traffic classification, in: 2020
29th International Conference on Computer Communications and Networks
(ICCCN), 2020, pp. 1–9, http://dx.doi.org/10.1109/ICCCN49398.2020.9209652.

[10] M. Conti, L.V. Mancini, R. Spolaor, N.V. Verde, Analyzing android encrypted
network traffic to identify user actions, IEEE Trans. Inf. Forensics Secur. 11 (1)
(2016) 114–125.

[11] S.E. Coull, K.P. Dyer, Traffic analysis of encrypted messaging services: Apple
imessage and beyond, SIGCOMM Comput. Commun. Rev. 44 (5) (2014) 5–11.

[12] R. Schuster, V. Shmatikov, E. Tromer, Beauty and the burst: Remote iden-
tification of encrypted video streams, in: 26th USENIX Security Symposium,
Vancouver, BC, Canada, 2017, pp. 1357–1374.

[13] R. Dubin, A. Dvir, O. Pele, O. Hadar, I know what you saw last minute -
Encrypted HTTP adaptive video streaming title classification, IEEE Trans. Inf.
Forensics Secur. 12 (12) (2017) 3039–3049.

[14] M. Finsterbusch, C. Richter, E. Rocha, J.A. Muller, K. Hanssgen, A survey of
payload-based traffic classification approaches, IEEE Commun. Surv. Tutor. 16
(2) (2014) 1135–1156.

[15] T. Bujlow, V. Carela-Español, P. Barlet-Ros, Independent comparison of popular
DPI tools for traffic classification, Comput. Netw. 76 (2015) 75–89.

[16] T.T.T. Nguyen, G. Armitage, A survey of techniques for internet traffic clas-
sification using machine learning, IEEE Commun. Surv. Tutor. 10 (4) (2008)
56–76.

[17] W. Lu, L. Xue, A heuristic-based co-clustering algorithm for the internet traffic
classification, in: 2014 28th International Conference on Advanced Information
Networking and Applications Workshops, 2014, pp. 49–54.

[18] A. Moore, D. Zuev, M. Crogan, Discriminators for Use in Flow-Based
Classification, Tech. rep., Queen Mary Uni. of London, 2005.

[19] A.W. Moore, D. Zuev, Internet traffic classification using Bayesian analysis
techniques, in: ACM SIGMETRICS, 2005, pp. 50–60.

[20] A. Fahad, Z. Tari, I. Khalil, I. Habib, H. Alnuweiri, Toward an efficient and
scalable feature selection approach for internet traffic classification, Comput.
Netw. 57 (9) (2013) 2040–2057.

[21] G. Draper-Gil, A.H. Lashkari, M.S.I. Mamun, A.A. Ghorbani, Characterization of
encrypted and VPN traffic using time-related features, in: The 2nd International
Conference on Information Systems Security and Privacy - Volume 1: ICISSP,
2016, pp. 407–414.

[22] J. Zhang, Y. Xiang, Y. Wang, W. Zhou, Y. Xiang, Y. Guan, Network traffic
classification using correlation information, IEEE Trans. Parallel Distrib. Syst.
24 (1) (2013) 104–117.

[23] J. Zhang, X. Chen, Y. Xiang, W. Zhou, J. Wu, Robust network traffic
classification, IEEE/ACM Trans. Netw. 23 (4) (2015) 1257–1270.

[24] M. Lotfollahi, M.J. Siavoshani, R.S.H. Zade, M. Saberian, Deep packet: A novel
approach for encrypted traffic classification using deep learning, Soft Comput.
24 (3) (2020) 1999–2012.

[25] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapè, MIMETIC: Mobile encrypted
traffic classification using multimodal deep learning, Comput. Netw. 165 (2019)
106944, http://dx.doi.org/10.1016/j.comnet.2019.106944.

[26] G. Aceto, D. Ciuonzo, A. Montieri, A. Pescapé, Toward effective mobile en-
crypted traffic classification through deep learning, Neurocomputing 409 (2020)
306–315, http://dx.doi.org/10.1016/j.neucom.2020.05.036.

[27] T. Qin, L. Wang, Z. Liu, X. Guan, Robust application identification methods for
P2P and VoIP traffic classification in backbone networks, Knowl.-Based Syst. 82
(2015) 152–162.

[28] F. Ertam, E. Avci, A new approach for internet traffic classification: GA-WK-ELM,
Measurement 95 (2017) 135–142.

[29] Z. Chen, K. He, J. Li, Y. Geng, Seq2Img: A sequence-to-image based approach
towards IP traffic classification using convolutional neural networks, in: 2017
IEEE International Conference on Big Data (Big Data), 2017, pp. 1271–1276.

[30] J. Zhang, F. Li, H. Wu, F. Ye, Autonomous model update scheme for deep
learning based network traffic classifiers, in: 2019 IEEE Global Communications
Conference (GLOBECOM), 2019, pp. 1–6.

[31] F. Pacheco, E. Exposito, M. Gineste, A framework to classify heterogeneous
internet traffic with machine learning and deep learning techniques for satellite
communications, Comput. Netw. 173 (2020) 107213, http://dx.doi.org/10.1016/
j.comnet.2020.107213.

[32] A.S. Iliyasu, H. Deng, Semi-supervised encrypted traffic classification with deep
convolutional generative adversarial networks, IEEE Access 8 (2020) 118–126,
http://dx.doi.org/10.1109/ACCESS.2019.2962106.

http://refhub.elsevier.com/S0140-3664(22)00040-8/sb1
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb1
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb1
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb2
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb2
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb2
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb3
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb3
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb3
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb3
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb3
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb3
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb3
http://arxiv.org/abs/1709.02656
http://dx.doi.org/10.1109/ACCESS.2017.2747560
http://dx.doi.org/10.1109/ACCESS.2017.2747560
http://dx.doi.org/10.1109/ACCESS.2017.2747560
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb6
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb6
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb6
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb6
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb6
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb7
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb7
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb7
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb7
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb7
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb8
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb8
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb8
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb8
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb8
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb8
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb8
http://dx.doi.org/10.1109/ICCCN49398.2020.9209652
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb10
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb10
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb10
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb10
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb10
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb11
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb11
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb11
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb12
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb12
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb12
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb12
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb12
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb13
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb13
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb13
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb13
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb13
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb14
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb14
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb14
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb14
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb14
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb15
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb15
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb15
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb16
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb16
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb16
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb16
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb16
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb17
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb17
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb17
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb17
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb17
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb18
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb18
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb18
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb19
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb19
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb19
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb20
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb20
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb20
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb20
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb20
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb21
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb21
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb21
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb21
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb21
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb21
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb21
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb22
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb22
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb22
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb22
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb22
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb23
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb23
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb23
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb24
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb24
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb24
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb24
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb24
http://dx.doi.org/10.1016/j.comnet.2019.106944
http://dx.doi.org/10.1016/j.neucom.2020.05.036
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb27
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb27
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb27
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb27
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb27
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb28
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb28
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb28
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb29
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb29
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb29
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb29
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb29
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb30
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb30
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb30
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb30
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb30
http://dx.doi.org/10.1016/j.comnet.2020.107213
http://dx.doi.org/10.1016/j.comnet.2020.107213
http://dx.doi.org/10.1016/j.comnet.2020.107213
http://dx.doi.org/10.1109/ACCESS.2019.2962106


S. Roy, T. Shapira and Y. Shavitt Computer Communications 186 (2022) 166–173
[33] T. Shapira, Y. Shavitt, FlowPic: A generic representation for encrypted traffic
classification and applications identification, IEEE Trans. Netw. Serv. Manage.
18 (2021) 1218–1232.

[34] A.H. Lashkari, G.D. Gil, M.S.I. Mamun, A.A. Ghorbani, Characterization of
tor traffic using time based features, in: The 3rd International Conference
on Information Systems Security and Privacy - Volume 1: ICISSP, 2017, pp.
253–262.

[35] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by
back-propagating errors, Nature 323 (6088) (1986) 533.

[36] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8)
(1997) 1735–1780.

[37] R.T.Q. Chen, Y. Rubanova, J. Bettencourt, D.K. Duvenaud, Neural ordinary
differential equations, in: 32nd Conference on Neural Information Processing
Systems, 2018.
173
[38] D. Campbell, R.A. Dunne, N.A. Campbell, On the pairing of the softmax
activation and cross–entropy penalty functions and the derivation of the soft-
max activation function, in: 8th Australian Conference on Neural Networks,
Melbourne, Australia, 1997, pp. 181–185.

[39] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, PyTorch:
An imperative style, high-performance deep learning library, in: Advances in
Neural Information Processing Systems 32, Curran Associates, Inc., 2019, pp.
8024–8035.

[40] S. Kotsiantis, D. Kanellopoulos, P. Pintelas, et al., Handling imbalanced datasets:
A review, GESTS Int. Trans. Comput. Sci. Eng. 30 (1) (2006) 25–36.

[41] S. Hong, J. Zhu, L.A. Braunstein, T. Zhao, Q. You, Cascading failure and recovery
of spatially interdependent networks, J. Stat. Mech. Theory Exp. 2017 (10)
(2017) 103208, http://dx.doi.org/10.1088/1742-5468/aa8c36.

http://refhub.elsevier.com/S0140-3664(22)00040-8/sb33
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb33
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb33
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb33
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb33
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb34
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb34
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb34
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb34
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb34
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb34
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb34
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb35
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb35
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb35
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb36
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb36
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb36
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb37
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb37
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb37
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb37
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb37
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb38
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb38
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb38
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb38
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb38
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb38
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb38
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb39
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb39
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb39
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb39
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb39
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb39
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb39
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb39
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb39
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb39
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb39
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb40
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb40
http://refhub.elsevier.com/S0140-3664(22)00040-8/sb40
http://dx.doi.org/10.1088/1742-5468/aa8c36

	Fast and lean encrypted Internet traffic classification
	Introduction
	Related work
	The dataset
	Dataset preparations
	Data processing

	Methods
	Preliminaries
	Background
	Ordinary Differential Equation Network (ODENet)

	The architecture
	Training specification

	Experiments and results
	Labeling datasets for different problems
	Class vs. All
	Multiclass

	Evaluation criteria
	Results on class vs. All problems
	Results on traffic categorization problems

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


