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In highly distributed Internet measurement systems distributed agents periodically measure
the Internet using a tool called traceroute, which discovers a path in the network
graph. Each agent performs many traceroute measurements to a set of destinations in the
network, and thus reveals a portion of the Internet graph as it is seen from the agent
locations. In every period we need to check whether previously discovered edges still exist
in this period, a process termed validation. To this end we maintain a database of all the
different measurements performed by each agent. Our aim is to be able to validate the
existence of all previously discovered edges in the minimum possible time.
In this work we formulate the validation problem as a generalization of the well know set
cover problem. We reduce the set cover problem to the validation problem, thus proving
that the validation problem is N P -hard. We present a O (logn)-approximation algorithm
to the validation problem, where n in the number of edges that need to be validated.
We also show that unless P = N P the approximation ratio of the validation problem is
�(log n).

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Our problem arises in the context of highly distributed
Internet measurement systems [7,8]. In this type of sys-
tems, distributed agents periodically measure the Internet
using a tool called traceroute, which discovers a path
in the network graph.1 Each agent performs many tracer-
oute measurements to a set of destinations in the net-
work, and thus reveals a portion of the Internet graph as
it is seen from the agent locations. While some edges can
be seen from many measurement locations, others can be
seen only from a handful of locations [7,8,1], which is the
major reason for distributing this process. We create a pe-
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1 The path can be expressed at various levels of abstraction. The most

common level in use is the autonomous system (AS) level, where each
node in the graph (and thus in the path) represent an AS (or a network)
in the Internet.
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riodic map by unifying the measurements made by all the
agents over this period.

There are many possible heuristics to direct agents to
destinations in order to find as many graph edges as pos-
sible. However, one thing we have to do in every period
is to check whether previously discovered edges still ex-
ist in this period, a process termed validation. To this end
we maintain a database of all the different measurements
performed by each agent.2 Our aim is to be able to vali-
date the existence of all previously discovered edges in the
minimum possible time.

A solution to the validation problem is to model each
traceroute measurement as a set of edges, and then look
for the smallest group of traceroute measurements (the
sets) that covers the known graph, e.g., using a set cover
logarithmic approximation algorithms [4]. However, this
solution may end up finding many groups which are mea-
sured by one agent while leaving other agents with little
or no measurements to perform. Since all agents measure

2 The list is kept at the abstraction level we are interested in, e.g., at
the AS level.
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at roughly the same rate, the termination time of the val-
idation task is determined by the time it will take the
agent with the largest number of measurements to com-
plete its task. Thus, our aim is not to minimize the number
of measurements that cover the graph, but to minimize
the maximal number of measurement which is assigned to
the agent with the most measurements. Therefore reduc-
ing the validation problem to the set cover problem will
not necessarily give us the best solution, so we describe
the validation problem as a generalization of the set cover
problem.

Our results. We define a new generalization of the set
cover problem that is equivalent to the validation prob-
lem, and give an O (log n)-approximation algorithm, where
n is the number of edges in the validation problem, and
show that our approximation ratio is tight, namely that
our generalization of set cover cannot be approximated in
polynomial time to within a factor of o(logn).

Organization. In Section 2 we give notations and a for-
mal definition of the problem. In Section 3 we present an
O (log n)-approximation algorithm for the generalized set
cover problem, and prove that this ratio cannot be asymp-
totically improved.

2. Preliminaries

For an algorithm A, denote the objective value of a so-
lution it delivers on an input I by A(I). An optimal solution
is denoted by opt, and the optimal objective value is de-
noted by opt as well. The (absolute) approximation ratio
of A is defined as the infimum ρ such that for any input I,
A(I) � ρ · opt(I).

Given a universe U = {u1, . . . , un} and a family of its
subsets, S = {S1, . . . , Sk} ⊆ P (U ),

⋃
S j∈S S j = U , set cover

is the problem of finding a minimal sub-family S̄ of S
that covers the whole universe,

⋃
S j∈S̄ S j = U . Set cover

is a classic N P -hard combinatorial optimization problem,
and it is known that it can be approximated to within
ln n − ln ln n + �(1) [9,5,10]. By [6,2] it follows that un-
less P = N P , there exists a constant 0 < c < 1 so that
set cover cannot be efficiently approximated to within any
number smaller than c log2 n. Feige [3] has shown hardness
of approximating set cover in (1 − o(1)) ln n.

We formalize the validation problem discussed in the in-
troduction in the following manner: every edge in a tracer-
oute is an element in a universe U . Each traceroute is
modeled as a set of elements in U —its edges. Each agent
is modeled as a family of sets, indicating the list of trace-
routes it can perform. Moreover, each agent has a weight,
indicating the number of traceroutes it can perform at a
time period. Thus we get the following problem:

Problem 2.1 (Validation Set Cover (VSC)). Given a uni-
verse U of n elements, a collection of subsets of U ,
S = {S1, . . . , Sk}, a partition of S π = {A1, . . . , Am} where
Ai ⊆ S , and a weight function ω :π → N, find a subcol-
lection S̄ of S that covers all elements of U such that
max1�i�m�|Ai ∩ S̄|/ω(Ai)� is minimum.
Note. The Validation Set Cover problem is indeed a gener-
alization of the set cover problem—if m = 1 then the Vali-
dation Set Cover problem is exactly the set cover problem.
Thus the Validation Set Cover problem is also N P -hard.

3. An O (log n)-approximation algorithm

In this section we give an approximation algorithm for
the VSC problem with an approximation ratio of O (log n).
We then show that this is the best ratio possible by show-
ing a lower bound of �(log n) on the approximation ratio.

The greedy strategy applies naturally to the VSC prob-
lem: iteratively for each 1 � i � m pick ω(Ai) sets in Ai
that cover the maximum number of elements in U that
are still uncovered. The algorithm stops when all the ele-
ments in U are covered, and outputs the number of steps
preformed.

Algorithm 1. Greedy VSC algorithm.

(1) � ← 0
(2) C ← ∅
(3) while C �= U

(a) � ← � + 1
(b) for 1 � i � m

(i) repeat ω(Ai) times
(A) find a set S j such that S j ∈ Ai and

S j ∩ (U \ C) is maximum
(B) pick S j

(c) C ← C ∪ S j
(4) output �

Theorem 1. Algorithm 1 gives an approximation ratio of
O (log n).

We next prove Theorem 1. We first define the �-resid-
ual VSC problem. The input to this problem is the input to
the VSC problems after � steps of the algorithm, with the
same objective function:

• Let n� be the number of elements in U that remain
after � steps of the algorithm. For � = 0, n� = n.

• Let C� be the set of elements in U that are covered
until step �.

• For all 1 � j � k = |S|
– let S�

j = S j \ C� ,

– for all 1 � i � m let A�
i = Ai \ {S j ∈ Ai | S j has been

picked until step �},
– let S � = {S�

j | S�
j �= ∅}.

• For all 1 � i � m let ω(A�
i ) = ω(Ai).

• Let opt� be the optimal solution of the residual input
after � steps.3

Then

opt� = min
S̄ �

max
1�i�m

⌈ |A�
i ∩ S̄ �|
ω(A�

i )

⌉
,

3 Recall that opt is the optimal solution.
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where S̄ � is a subcollection of S � that covers all elements
of U \ C� .

Thus we get the following claim:

Claim 3.1. At step � � 1 of Algorithm 1 at least n�−1/opt�−1
elements in U are covered.

Proof. The main observation is that any optimal algorithm
covers all the elements in opt stages. Obviously, there ex-
ists a stage in which at least n/opt elements are covered.
Since the order of the stages does not change opt, as-
sume without loss of generality that at stage 1 any optimal
algorithm covers at least n/opt elements. Thus, if � = 1
then, since Algorithm 1 picks a set that covers the maxi-
mum number of elements, it holds that at least n/opt =
n�−1/opt�−1 elements are covered at step �. If � > 1 then
an optimal algorithm covers all the n�−1 remaining ele-
ments of U \ C�−1 in opt�−1 steps. Since Algorithm 1 picks
a set that covers the maximum number of remaining el-
ements, it holds that at least n�−1/opt�−1 elements are
covered at step �. �

Using the above claim and the observation that for all �

opt� � opt, we get the following lemma.

Lemma 3.2. n� � n(1 − 1/opt)�−1 .

Proof. By induction on �:

n1 � n − n

opt

= n

(
1 − 1

opt

)
,

n2 � n1 − n1

OPT1
= n1

(
1 − 1

OPT1

)

� n1

(
1 − 1

OPT

)
� n

(
1 − 1

OPT

)2

.

Assume that for all i < � it holds that ni � n(1 − 1/opt)i .
Then

n� � n�−1 − n�−1

opt�−1

� n

(
1 − 1

opt

)�−1

− n�−1

opt�−1

� n

(
1 − 1

opt

)�−1

− n
(
1 − 1

opt

)�−1

opt

= n

(
1 − 1

opt

)�

. � (1)

Proof of Theorem 1. In the worst case the algorithm stops
after � + 1 steps for the minimal � such that n� � 1. Since
by the above lemma n� � n(1 − 1/opt)� , for that � with
n(1 − 1/opt)� � 1 it holds that n� � 1.

n

(
1 − 1

opt

)�

� 1

⇔
(

1 − 1
)�

� 1
opt n
⇔ � � log(1/n)

log
(
1 − 1

opt

) = log n

log
(

opt

opt−1

)

⇔ � � log n

log
(
1 + 1

opt−1

) . (2)

We now prove that logn
log(1+1/(opt−1))

� log n · opt. It holds
that

log n

log
(
1 + 1

opt−1

) � log n · opt

⇔ 1 + 1

opt − 1
� e1/opt.

According to the Taylor series we have that

f (x) =
n∑

i=0

f (i)(0)
xi

i! + Rn(x),

where

Rn(x) = f (n+1)(c)

(n + 1)! xn+1,

for some 0 � c � x. For f (x) = ex we get that

ex =
n∑

i=0

xi

i! + ec xn+1

(n + 1)! ,

for some 0 � c � x. For x = 1/opt and n = 2 we get that

e1/opt = 1 + 1

opt

+ 1

2opt
2

+ ec

6opt
3
,

for some 0 � c � 1/opt. Now,

1 + 1

opt − 1
� 1 + 1

opt

+ 1

2opt
2

+ ec

6opt
3

⇔ 1

opt − 1
− 1

opt

� 1

2opt
2

+ ec

6opt
3

⇔ 1

(opt − 1)opt

� 1

2opt
2

+ ec

6opt
3

⇔ 1

opt − 1
� 1

2opt

+ ec

6opt
2

⇔ 6opt
2 � (opt − 1)(3opt + ec). (3)

The last inequality is valid since ec < 3 (as c � 1/opt). Thus
1 + 1/(opt − 1) � e1/opt, so logn

log(1+1/(opt−1))
� log n · opt.

Therefore the number of steps used by Algorithm 1 is at
most 1 + log n · opt, and the theorem follows. �

By [6,2] it follows that unless P = N P the approxima-
tion ratio of the set cover problem is �(log n). Since for
m = 1 and for 1 � i � m, ω(Ai) = 1 the VSC problem is ex-
actly the set cover problem, we get that unless P = N P
the approximation ratio of the VSC problem is �(log n).
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