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Abstract— IP hijack attacks deflect traffic between endpoints
through the attacker network, leading to man-in-the-middle
attacks. Current detection solutions are only based on AS-level
path analysis, while attacks that include data-plane manipu-
lations may exhibit only geographic anomalies and preserve
the AS-level route, or hide the problematic AS in the path.
Thus, there is a need to develop data-plane analysis frameworks
that examine the actual route packets traverse. We introduce
here a deep learning system that examines the geography of
traceroute measurements to detect malicious routes. We use
multiple geolocation services, with various levels of confidence;
each also suffers from location errors. Moreover, identifying a
hijacked route is not sufficient since an operator presented with
a hijack alert needs an indication of the cause for flagging out
the problematic route. Thus, we introduce a novel deep learning
layer, called Source-Aware Self-Attention (SASA), which is an
extension of the attention mechanism. SASA learns each data
source’s confidence and combines this score with the attention of
each router in the route to point out the most problematic one.
We validate our IP hijacking classification method using two
router data types: coordinates and country location, and show
that SASA outperforms the regular self-attention layer, using the
same neural network architecture, and achieves extremely high
accuracy.

Index Terms— Internet, BGP, IP hijack, routing, security,
IP geolocation, deep learning, attention mechanism, noisy data,
dataset.

I. INTRODUCTION

IN RECENT years, there have been many reports of IP
hijack attacks of nations and large companies, as more than

40% of the network operators reported that their organization
had been a victim of a hijack in the past [1], [2]. In an IP
hijack attack, the attacker diverts the traffic to its own network
and then forwards it to the original destination, forming a
man-in-the-middle (MITM) attack. This allows espionage,
traffic manipulation, network penetration, and more. Since
such attacks are hard to perform, they are mostly used by
governments and large criminal organizations.

Current solutions for IP hijack detection [3]–[5] are based
on monitoring BGP routing announcements, and mostly detect
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Fig. 1. Inference information flow.

changes due to change of origin AS, the first upstream
providers, and some obvious malicious route changes. How-
ever, hijack attacks are not limited to BGP manipulations and
can also be performed with stealthier methods, e.g., by manip-
ulating routing at the data plane in IXPs or inserting static
entries to key ISPs. We show in this paper (see section VII-G),
for the first time in the literature, an example of a suspected
IP hijack attack that has no BGP signature and seem to be
a result of BGP entry manipulation at the source ISP. Thus,
we need to develop IP hijack detection tools that examine the
actual route packet traverse, which, during a data-plane attack,
may not be the one announced in BGP.

It is important to note that routes may be deflected in
unreasonable ways, also due to human error, not necessarily
due to malicious acts. Even such benign deflections expose
traffic to MITM attacks, e.g., by traversing networks, which are
involved in espionage and may lurk for interesting data. It is
almost impossible to know the cause of a deflection without
knowing the intent behind people’s actions. Thus, we follow
previous work [6] and throughout this paper we will use IP
hijack and deflection interchangeably.

In this paper, we introduce a novel data-plane approach for
IP hijack detection based on geographical data, using deep
learning methods. We rely on the actual route that the packets
traverse, obtain through traceroute measurements, rather than
the path advertised by BGP [7]. Given the routers’ IP addresses
along the route, we obtain their geographic location and
analyze the route geography.
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Fig. 2. A comparison between (LEFT) a regular route from Israel to Germany, and (RIGHT) a Russian Hijacking from March 2021 of this route with clear
Geographical footprint: IL → DE → RU → DE.

Our motivation for using geography for hijack detection is
that although the primary routing decision criteria in BGP
mostly derive from economic agreements between ASes, these
contracts also reflect geographical and geopolitical constraints,
as it is reflected in Figure 2. Hence, it is less likely to
select paths that significantly deviate from the ideal direct
geographical route, and certainly, it is unlikely for a route
to traverse unfriendly countries. There have been only a few
works that examined using geographical data for characteriz-
ing international detours in the Internet [7], [8] and some for
visualization purposes [9]–[12]; however, none of them aimed
at IP hijack detection.

Our data is obtained from large traceroute measurement
campaigns from multiple agents around the world. The IP
addresses are converted to geographical information using
several geolocation services. Each route is labeled as hijacked
or benign by three analysis algorithms: BGP Valley-free (VF)
analysis that is based on Shavitt et al. [13] with manual cor-
rections, geographical analysis, and ASN ownership analysis
(see Sec. III).

The introduction of the Attention Mechanism [14] in deep
learning has improved the success of various NLP models,
by mapping the essential and relevant words from the input
sentence and assign higher weights to these words, enhancing
the accuracy of the output prediction. We build on the excellent
results achieved for time series tasks and design a new layer
that is based on the attention layer. Because there are many
different services, with various levels of confidence [15],
we design our layer to incorporate the data source confidence
level of each data sample. Thus, we called our layer Source-
Aware Self-Attention (SASA). Just like any other parameter,
our layer also learns the confidence of each data source.

We test the SASA module in two scenarios. First, we exam-
ine a solid monitoring campaign from a few tens of loca-
tions to a limited set of about 2000 Address Prefixes (APs)
worldwide. This campaign was active for many months, and
as a result, its related geographic data is more accurate since

operators manually corrected geographic errors. The second
noisy scenario examines routes from 7 monitoring points to
the entire IPv4 address space. As a result, it represents a case
of high geolocation inaccuracy. In addition, we test the model
on a few interesting deflection cases that were not part of
the training datasets, all of them are successfully flagged by
the model. We make the noisy dataset as well as some of
the other events data and our code publicly available for the
community.

Our approach achieves excellent results and also indicates
the cause for flagging out problematic routes. We detect IP
hijack attacks with an accuracy of 99.24% with 0.80% False
Alarm and a detection rate of 99.52% on the solid dataset, and
accuracy of 90.19% with 9.50% False Alarm and a detection
rate of 84.54% on the noisy dataset. Finally, as far as we know,
we are the first to use geographical route information to detect
IP hijack attacks.

The rest of the paper continues as follows. After describing
related work in Sec. II, we describe the datasets in Sec. III.
In Sec. IV, we introduce some preliminaries on Recurrent
Neural Networks and Attention Mechanism, then Sec. V
introduces the SASA layer and describes the neural network’s
architecture, and Sec. VI presents our experiments and their
results. In Sec. VII we introduce interesting deflection cases,
and in Sec. VIII we discuss several deployment issues. Finally,
the last section concludes the paper.

II. RELATED WORK

There are many different approaches for the detection of IP
hijacking. We divide these approaches into three main cate-
gories, based on the type of information they use: 1) Control-
plane approaches [3]–[5] - also called passive solutions, these
methods analyzed BGP routing information from a distributed
set of BGP monitors and route collectors to detect anomalous
behavior, 2) Data-plane approaches [2], [16], [17] - only relies
on real-time data plane information that is obtained from
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multiple sensors that deploy active probing (pings/traceroutes).
Some of these methods are based on analyzing IP TTL (Time
to Live) or an increased RTT (round-trip delay time), and
3) Hybrid approaches [18]–[20] - these approaches use both
control-plane and data-plane information and sometimes also
use external databases to perform joint analysis.

There are several works that involved the use of geo-
graphical data, mainly for visualization purposes [9]–[12].
Theodoridis et al. [11] introduced an unsupervised method
that is based on three features related to the frequency of
appearance and the geographic deviation of each intermediate
AS towards a given destination country: the probability of
an intermediate country appearance along a route toward a
specific Origin-Country (CAP), the geographic length which
is the ratio of the length of the path against the ideal
direct path (CGL), and the Z-score of geographic lengths
for all the intermediate countries of a certain Origin-Country
(CGLZ). Following their work, Papadopoulos et al. [12] pre-
sented BGPfuse, a scheme for visualizing and exploring BGP
path change anomalies, which used the three features which
were mentioned before (CAP, CGL, CGLZ) with the addition
of CAPZ, which is the Z-score of CAP. They used these
features to quantify the degree of the anomaly of each BGP
hijacking event.

Several recent works [6], [21]–[24] examined machine
learning techniques with manually generated features to iden-
tify malicious origin ASes; mainly leveraging historical BGP
data from RouteViews [25] and RIPE. Cho et al. [6] classified
detected hijack events. Unlike previous works, their work
aimed to classify detected hijack events and not detect new
hijack events. Shapira and Shavitt [26] have introduced a new
method, called BGP2VEC, that uses BGP route announce-
ments as sentences to embed each AS number (ASN) to a
vector that represents its latent characteristics. Using these
vectors as an input to a recurrent neural network, they achieved
an excellent result for IP hijack detection.

Shah et al. [8] characterized international detours in the
Internet, i.e., traffic that leaves a country crossing international
boundaries and return to the same country. To detect detours,
they used BGP RIB (based on RouteViews [25] and RIPE) and
map each AS to its corresponding country using geolocation
services. They analyzed each global BGP RIB entry looking
for detours and showed that more than 5K unique BGP pre-
fixes experienced a detour. Shah et al. [8] claim that over 11%
of the ASNs are mapped to more than one countries. Indeed
many of the geographic deflection we discovered involve large
ASNs that span many countries and thus are not amendable to
their analysis. In addition, we aim to discover only deflections
that may be due to malicious intent, and the source and origin
may not be the same country.

As opposed to Shah et al. [8], Edmundson et al. [7] used
router-level forwarding paths (via traceroutes measurements)
to generate country-level paths using MaxMind (which is
termed as data source ‘A’ in our study). They generated paths
to popular domains for five chosen countries, characterized
transnational routing detours, and compared different country
avoidance techniques, i.e., for preventing routing through
unfavorable countries, using the open DNS resolver. While
MaxMind has very good accuracy for end systems, their router
level accuracy has significant errors [15].

In 2004, Zhu and Wu [27] presented a systematic evaluation
of the effect of class noise and attribute noise in machine
learning, and analyze their impacts on the system performance.
Following their work, many advances have been made in
dealing with label noise [28]–[31]. However, as far as we
know we are the first to present a deep learning method
for dealing with unreliable data in multi-source datasets.

III. THE DATASETS

Our data is constructed (see Figure 1) by executing tracer-
outes from DIMES [32] style software agents (the agents
were installed on paid VPSs without volunteer machines) in
two different ways: 1) ‘Dataset A’ - On May 2019, we used
78 agents worldwide (see Table VIII), each performed about
30,000 traceroutes to roughly 2000 destination IPs, overall
there were 8213 destinations in 434 ASes worldwide; overall
2,113,049 traceroutes. 2) ‘Dataset B’ On Dec. 2019, we used
7 agents, each traceroute one IP from every announced AP in
the IPv4 range; overall 5,291,799 traceroutes

The IPs in the traceroutes were converted to two types
of paths: coordinates (latitude, longitude) and the country
location. The conversions were done using three types of
databases: (M) a proprietary high accuracy dataset of about
20 million IPs, mostly routers, where geolocations are gener-
ated by multiple methods based on traceroute from hundreds of
monitors worldwide, (R) a proprietary good accuracy dataset
of about 700 million IPs of routers, cloud blocks, and end sys-
tems, (A) MaxMind was used for IPs not in the other datasets,
mostly for IPs in stub networks. We denote by (X) private IPs
and non-responding routers. The total numbers of non-unique
usages for each dataset are summarized in Table II.

We generate three labels for each path, using RED for a
suspected hijacked route and GREEN otherwise, by applying
the followings three rule-based algorithms:

1) Geo - an intermediate country is suspicious, e.g., a route
between Italy and Spain traverses Russia.

2) Owner - intermediate network ownership is suspicious,
e.g., a route between British and Italian networks tra-
verses a Chinese network in the UK.

3) VF - BGP ‘valley-free’ analysis [13] using the CAIDA
AS Relationships dataset [33].

The rules for both Geo and Owner labeling need to take
into account common routing practices, e.g., a route between
Australia and Japan may traverse West Coast USA although
it is longer than other options, while using a Chinese provider
(e.g., China Telecom PoPs in West Europe) for domestic
traffic in West Europe is suspicious, since such routes hardly
exist. We use RouteViews [25] to map each IP address to its
corresponding ASN, and use the CAIDA AS Rank [34] to map
each ASN to its owner country both with manual corrections.1

The ‘combined’ label for a path is GREEN if none of its
three labels are RED. The number of labels for each algorithm
are summarized in Table I. Note that each algorithm has some
unclassified routes; therefore, the total number of routes per
algorithm may differ. In contrast, the algorithm proposed in
this paper classifies all routes.

1For example, AS5080 (Aramco) appears as American in public databases,
but we correct it to be Saudi.
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TABLE I

NUMBER OF SAMPLES IN OUR DATASETS

TABLE II

DISTRIBUTION OF DIFFERENT SOURCES IN OUR DATASETS

The routes in ‘Dataset A’ were used continuously for several
months for monitoring specific routes and thus were inspected
manually. As a result, IP geolocations were corrected manually
(either individually or by specially crafted algorithms); indeed,
Table II shows that over 74% of the geolocations are marked
with ‘M.’ In addition, the continuous manual route labeling
inspection results in the identification of cases where the
rule-based labeling is incorrect, and the monitoring system
is capable of handling the various level of exception rules
that are inserted in these cases by a team of specialists. As a
result, the system labeling deviates from the simple rule-based
analysis. In fact, this manual exception process is one of the
motivations for this paper since we believe we managed to
train the model to generalize the specific manual alterations.

We also examined a few interesting deflection cases discov-
ered by our monitoring system during the years 2018-2020.
None of the events occur during the time we collected our
training datasets.

We make ‘Dataset B’ as well as several additional deflection
cases publicly available.2 For each hop, we provide its corre-
sponding latitude, longitude, location country code, ASN, and
geolocation source. For each path, we provide two types of
labels; ‘VF’ and ‘combined.’

IV. PRELIMINARIES

In this section, we introduce some preliminaries on Recur-
rent Neural Networks (RNN) and Attention Mechanism, which
are the two main ingredients of our approach.

A. Recurrent Neural Networks

Recurrent Neural Networks or RNNs [35] are a class of
Artificial Neural Networks (ANNs) for processing sequential
data. In a traditional ANN, we assume that all inputs (and
outputs) are independent of each other. RNNs perform the
same task for every element of a sequence, with the output
being depended on the previous computations, such that each
member of the output is a function of the previous members of
the output, and is produced using the same update rule applied

2https://github.com/talshapira/SASA

to the previous outputs. This recurrent formulation results in
the sharing of parameters through a very deep computational
graph when each node represents the state at time t. RNNs are
trained in the same way as MLPs, using back-propagation [36].

The Long Short Term-Memory neural networks,
or LSTMs [37], are a specific kind of RNNs, which
are capable of learning long-term dependencies and have
achieved state of the art results in many fields such as
speech recognition, translation, image captioning, etc. These
networks are composed of units called memory cells that
have an internal recurrence (a self-loop), in addition to the
outer recurrence of the network. Each cell contains three
‘gates’; 1) an input gate to control the flow of inputs into the
memory cell, 2) an output gate to control the output flow of
cell activations into the rest of the network, and 3) a forget
gate, which controls the self-loop weight and set it to a value
between 0 and 1 via a Sigmoid unit.

B. Attention Mechanism

An attention Mechanism is a method that is broadly used
in the field of Natural Language Processing (NLP) [38],
including the problem of long sequences in machine trans-
lation [14], [39], [40], by creating a unique mapping between
each time step of the decoder output to all the encoder hidden
states. Attention mechanisms help deep-learning algorithms
to achieve better performance by paying greater attention to
certain factors when processing the data. There are many types
of attention mechanisms. Among them, there are Bahdanau
Attention [39], which commonly referred to as Additive Atten-
tion and Luong Attention [40], which often referred to as
Multiplicative (dot-product) Attention. Self-attention [14] (or
intra-attention) is a specific type of the attention mechanism,
which only requires a single sequence to compute its repre-
sentation, and quantifying the interdependence within the input
elements. Since self-attention is applied to both each element
and all elements together, no matter how distant they are, the
system can capture distant dependency relationships.

The following steps can describe the general process: First,
the encoder produces hidden states of each element in the
input sequence. Second, the similarity between the encoder
hidden states and the decoder hidden states is computed using
a similarity function such as a dot product, to obtain an
alignment score. In the case of self-attention, the alignment
score is computed by the similarity between the input sequence
and the hidden states (or between query-key pairs as presented
in Figure 3). In the third step, a softmax [41] function is
applied to normalize these alignment scores and get the
attention weights, and finally, the attention weights and their
corresponding values are multiplied to form the context vector.

V. METHOD

In this section, we describe in detail the implementation of
the SASA layer and the architecture of the deep neural network
we designed for the classification.

A. SASA

Our Source-Aware Self-Attention layer is based on the
Scaled Dot-Product Attention layer (SDPA), that was intro-
duced by Vaswani et al. [14], which is a variant of the dot-
product attention [40]. Let n be the number of elements in the
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Fig. 3. (left) Scaled Dot-Product Attention. (middle) Scaled Dot-Product
Attention using Queries and Keys multiplied by the Sources. (right) Source-
Aware Self-Attention.

input sequence. Given input matrices of n query vectors Q ∈
R

n×dk , keys vectors K ∈ R
n×dk , and values V ∈ R

n×dv ,
the scaled dot-product attention outputs are computed as:

Attention(Q,K,V) = softmax(
QKT

√
dk

)V, (1)

where dk is the dimension of keys and queries vectors, dv is
the dimension of values vectors, and the softmax [41] function
is defined by

Softmax(xi) =
exp(xi)∑
j exp(xj)

, for i = 1, . . . , n. (2)

In the case of self-attention, the queries, keys, and values are
obtained by mapping the matrix of input vectors X ∈ R

n×d

using different linear projections, where d is the number of
hidden units of the input layer.

Given an input of n sources (a source per element), we map
each source to a one-hot vector of size m, such that m is
the total amount of possible sources, and each vector consists
of 0s in all cells except for a single 1 in the cell that is
used uniquely to identify the word. Then we embed each
one-hot vector to an embedding vector of size ds, by using
the linear projection WS ∈ R

m×ds , and obtain a matrix of
n source vectors S ∈ R

n×ds . Finally, a confidence score is
calculated for each source using the Sigmoid function, which
is defined by σ(x) = 1/(1 + exp(−x)), and maps each value
to a confidence value between 0 to 1.

Using the n source vectors, we suggest two variations of
layers, which are presented in Figure 3. In the first variation
(we termed it (SDPA-QS-KS)), we first multiply the keys and
the queries vectors with the source vectors using element-wise
multiplication (or Hadamard product), and then we used the
Scaled Dot-Product Attention as is, i.e.,

Attention(Q � σ(S),K � σ(S),V). (3)

The second variation is our Source-Aware Self-Attention
layer (SASA). We first multiply (using element-wise multipli-
cation) the scaled squared source scores matrix, which is an n
× n matrix, with the regular attention scores matrix, and then

TABLE III

THE ARCHITECTURE OF OUR ATTENTION-LSTM NETWORK

we multiply the product with the values to obtain the attention
outputs based on the following equation:

SASA(Q,K,V,S) = (
σ(S)2

ds
� softmax(

QKT

√
dk

))V. (4)

In this work, we choose to use dk = dv = ds = d = 32.
Furthermore, we choose to use a single value for each source,
such that we first embed each one-hot vector to a single value
(i.e., ds = 1), apply the Sigmoid function for each value, and
then we duplicate each value dk to match the dimensions of
keys and queries vectors.

B. Network Architecture

The purpose of this study is to examine the viability of
attention mechanisms in two aspects: how to treat multiple
information sources with different reliability, and how to high-
light the cause of flagging an anomaly. Thus, we concentrate
on the design of the attention layer, and do not attempt to
optimize the rest of the architecture.

As depicted in Table III, our LSTM architecture comprises
four layers, not counting the input. Our input layer consists
of 40 entities, which is the maximum length of routes in our
datasets. In the case of a shorter route, we pad the remaining
entities with 0s. As mentioned in Sec. III, in this work, we use
two types of inputs: 1) coordinates, the latitudes and longitudes
pairs divided by 90 and 180, correspondingly, such that each
entity has a size of 2, and 2) countries, each country is indexed
with a number between 0 and 246 (The datasets have 78 and
247 countries, respectively).

A sequence of coordinates or countries is fed into the first
layer of the network, which is an embedding layer (We omit
the details). The next layer is the attention layer. In our
experiments, we compare between different attention layers
as described in Sec. V-A. The inputs of each variation of the
SASA layer also includes the source vectors, as described in
Sec. V-A. We use dk = dv = ds = d = 32 such that the
output remains with the same size as the input. The next layer
is the Bidirectional-LSTM layer, which consists of 100 LSTMs
cells with a default configuration [37], and produces a 200-
size output vector. Finally, our output layer is a single neuron
with a Sigmoid activation function, which produces a value
between 0 and 1.

C. Training Specifications

The training of the networks is done by optimizing the
binary cross entropy [42] cost function, which is a measure of
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TABLE IV

A SUMMARY OF OUR RESULTS USING DIFFERENT TYPES OF ATTENTION LAYERS, OVER DIFFERENT DATASETS
BASED ON THE ‘COMBINED’ LABELING METHOD

the difference between the Sigmoid layer output and the true
label of the sample. For the optimization process we use the
Adam [43] gradient-based optimizer. Because our datasets are
imbalanced, i.e., the ‘RED’ classes are mostly less than 1%
of the datasets, we use a balanced generator that randomly
samples the training set, such that in each batch, we have the
same amount of ‘RED’ and ‘GREEN’ paths.

We build and run our networks using the Keras [44] library
with Tensorflow [45] as its back-end. We use 80% of the
samples as a training set and 20% of the samples as a test
set. We run our network for 60 epochs of the training set.
We save the result, which achieves the best accuracy during
the training process.

VI. EXPERIMENTS AND RESULTS

In this section, we report our experimental results. Since
we have not found any previous work to compare our routes
with, we compare our SASA layer with the regular Scaled Dot-
Product Attention (SDPA) layer, as well as other variants we
suggest. Since both SDPA and SASA present good attention
performance, we will devote most of the evaluation section to
the gain in accuracy of hijack detection obtained by the SASA
layer.

A. Evaluation Criteria

Any classification system for anomaly detection (in our case
route deflection) would like to maximize its detection rate and
minimize the false alarm rate. For this purpose, we introduce
three criteria as presented in Table IV:

1) Accuracy (Acc.), which is defined as the proportion
of examples for which the model produces the correct
output of all predictions made. A formal definition of the
accuracy for binary classification is

Accuracy =
TP + TN

TP + TN + FP + FN
, (5)

where TP , TN , FP and FN are the true positive, true
negative, false positive, and false negative, respectively.
In our case the positive class corresponds with ‘RED’
routes,

2) False Alarm (FA), which is the False Positive Rate
(FPR), defined as

FPR =
FP

FP + TN
, (6)

3) Detection Rate or Recall (Rc), which is defined by

Rc =
TP

TP + FN
. (7)

In many cases, one would like to control the trade-off
between the false alarm rate and the detection rate. Namely,
set the accepted false alarm (which can be done here by setting
the threshold for the prediction score) and aim at the highest
possible detection rate. Thus, we introduce two additional
evaluation criteria:

4) AUC, which is the area under the ROC curve (a plot
of the true positive rate (TPR) against the false pos-
itive rate (FPR) at various thresholds), as displayed
in Figures 4 and 5, and

5) True Positive Rate (TPR) as defined by

TPR =
TP

TP + FN
, (8)

for different FPR values. In real-world deployments,
the number of routes to be classified by our models
may be quite high. As a result, even a moderate FPR
may result in too many false alarms, which will make
the detector unuseful. Consequently, we evaluate the
TPR of the detectors while enforcing FPR levels (0.1%,
1%, and 10%).
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Fig. 4. ROC curves of models on ‘Dataset A’ - test set for FPR 0.01.

Fig. 5. ROC curves of models on ‘Dataset B’ - test set for FPR 0.10.

B. Results on Geo Routes Classification

A comparison of our results using different types of
attention layers is presented in Table IV. For each dataset,
we conducted multiple experiments using different data types;
coordinates and countries as described in Sec. III, and different
Attention layers; Scaled Dot Product Attention (SDPA), SDPA-
QS-KS and Source-Aware Self-Attention (SASA), as described
in Sec. V-A. Furthermore, we also conducted one experiment
using the SDPA as is, by just replacing the keys (or queries)
with the sources (denoted by SDPA-Q-S), i.e.,

Attention(Q, σ(S),V), (9)

and another experiment by using the SDPA as is and just
multiplying it with the sources (denoted by SDPA-Mul-S), i.e.,

Attention(Q,K,V) � S. (10)

As Table IV shows all three SDPA-QS-KS, SDPA-Q-S, and
SDPA-Mul-S led to performance degradation (even relative
to the regular SDPA without the use of sources). For each
experiment in Table IV, after training our neural network over
the corresponding training set, we evaluate our method over
the test set, which consists of 20% of the dataset and based
on the ‘combined’ labeling.

Given the imbalance of the datasets, an “always GREEN”
classifier will achieve an accuracy of 99.57% and 94.89%
on datasets A and B respectively, with 0 false alarm. Not
surprisingly, all the tested methods achieved similar results,
with SASA showing (slightly for ‘Dataset A’) better accuracy
and better false alarm rate: an accuracy of 99.24% with a false
alarm of 0.8% on ‘Dataset A’, and an accuracy of 90.19%,
with 9.5% FA on ‘Dataset B’, as presented in Table IV. All the

methods achieve high Recall values, where SASA achieves the
highest results with 99.52% on ‘Dataset A’, while the “always
GREEN” classifier would get 0%. Namely, looking at all three
parameters, we can see that learning was achieved despite the
large imbalance. Notice that on ‘Dataset A’, which is less
noisy (the ‘M’ sources comprises about 74% of the sources),
the SASA layer achieves 0.1-0.2% improvement, while on
‘Dataset B’, which is noisier (the ‘M’ sources comprises less
than 59% of the sources), the SASA layer achieves 1.6-1.9%
improvement.

It can also be noticed that the use of countries achieves
better accuracy than coordinates; this may be explained by
the fact that borders are far from convex, and it is hard
to learn cases when one country stretches into another. For
example, the Vladivostok area can be easily mistaken to
be part of China, and distinguishing between Singapore and
Batam, ID that are only 30Km apart is hard since Indonesia
has territories that are engulfing Singapore from almost any
direction.

Figures 4 and 5 present ROC curves of all models on
‘Dataset A’ and ‘Dataset B’, respectively, using coordinates as
entities and based on the ‘combined’ labeling method. It can be
seen that both SDPA, SASA, and SDPA-QS-KS achieve great
TPR results on ‘Dataset A’ even for low FPR below 0.5%.
On ‘Dataset B’ it can be seen that SASA outperforms all other
models, and for low FPR, achieve TPR values higher than the
rest by about 10%. The AUC value for SASA (see Table IV)
is 99.80 and 94.56, for datasets A and B, respectively.

The purpose of detecting deflected routes is to be able to
react in case of an IP hijack attack. If a system creates too
many false alarms (FAs), the load on the responsible team
may be too high, and system credibility will be hurt. Thus,
we would like to control the false alarm rate and achieve
the highest possible detection rate. Table IV shows trade-off
points for moderate FA of 1%, and low FA rate of 0.1%. For
countries, which is the better option as we have already seen,
SASA has a significantly better detection rate, over 80.81%
detection rate, and a gap above 10% for 0.1% FA for ‘Dataset
A’. For ‘Dataset B’, 0.1% FA is not a possible working point
since all methods detect less than a third of the deflection
events; for 1% FA, SASA detects 63% of the deflections, about
3% better that SPDA.

Table V displays a comparison of experiments using dif-
ferent labeling methods: Geo, Owner, VF, and Combined as
described in Sec. III. In each experiment, we trained our
network with coordinate data using one of the specific labeling
methods, and evaluate its performance based on a unified
test set using the ‘combined’ labeling method. The results
highlight the generalization ability of our method; by training
our network using ‘Geo’ and ‘Owner’ labels, our method can
achieve high accuracy for the ‘combined’ labeling method,
in some cases even better results than by training using the
‘combined’ labeling method. It can also be seen that based
on the VF labeling, our network achieves lower accuracy,
which may be explained by the fact that VF is not based on
geographical data.

C. Exploration of Source Scores

Table VI displays a comparison of source scores that were
calculated by SASA for the different path types. Interestingly,
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Fig. 6. Rows from top: SASA attention scores (A-Mul-S), source scores, SASA intermediate attention scores (without sources), and SDPA attention scores.

TABLE V

A COMPARISON OF SPDA AND SASA COORDINATES-ROUTES CLASSIFICATION RESULTS USING DIFFERENT

LABELING METHODS BASED ON THE ‘COMBINED’ LABELING METHOD (DENOTED AS ‘C’)

TABLE VI

A COMPARISON OF DATA SOURCE SCORES
THAT WERE CALCULATED BY SASA

the network gave a higher score to untrusted than to the
trusted sources. The reason for this is that MaxMind is quite
accurate for stub networks, while badly performs for routers
and clouds. However, the MaxMind data is hardly used for
routers, especially in the first dataset, since the proprietary
databases are used for these. As a result, for ‘Dataset A’,
MaxMind is mostly used where it is in fact accurate, leading to
a high score. Furthermore, consistently, the ‘X’ source, which
stands for restricted IPs, gained a high source score. This may
be because ‘RED’ routes have a relatively higher amount of
X (and A) sources than ‘GREEN’ routes.

D. Comparison With Other Methods

We compare the performance of SASA with two AS-level
path analysis methods: 1) VF - the Valley-Free approach,
which is a ‘classic’ AS-level path analysis method for BGP
hijacking detection [19], [46], [47]. The computation of the

‘VF’ is based on the CAIDA AS Relationships dataset [33].
The comparison is performed using a subset of the test set
which has both coordinates and ASN-level routes, for a fair
comparison with the ‘VF’ approach. 2) BGP2VEC - we use
the same deep learning model that was used in [26]. The
model was trained based on a labeled dataset of approximately
3,600,000 BGP route announcements that was collected in
March 2018.

Furthermore, we compare our Attention model with other
state of the art Machine Learning techniques using the coor-
dinates routes. We use the following ML methods: Logistic
Regression (LR), Support Vector Machine (SVM), Naive
Bayes classifier (NB), a single hidden layer neural net-
work (MLP), Decision Tree (DT), and Random Forest (RF).
We used the python scikit-learn package [48] to run the ML
models with default parameters.

Table VII presents the comparison using two labeling meth-
ods; ‘Geo’ and ‘Owner’, using ‘Dataset B’. Clearly, the ‘VF’
algorithm detects only a low percentage of the deflected routes.
We suspect that this is due to the usage of tier-2 providers that
are controlled by state actors. As a result, the deflections do
not create a valley to be detected by the VF algorithm. Note,
that the ‘VF’ algorithm does not provide prediction score,
and therefore the last four columns are empty. BGP2Vec was
trained on AS level data (without geography), thus its close to
50% success rate is impressing since the number of VF and
Owner tagged RED routes is less than 50% of the combined
RED routes (see Table I).
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Fig. 7. Examples of deflected routes.

The SASA detection rate is significantly higher than any
other ML method for both labeling. We suspect that the noise
in the data is confusing classic methods but SASA manages to
clean it at the cost of an increase in the false alarm. The AUC

of SASA is also the best of all methods, but here DT and RF
are doing quite well. In particular, for some of the example
points given in the right-most columns SASA does not achieve
the best results.
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TABLE VII

A SUMMARY OF OUR RESULTS COMPARED WITH ‘VF’ METHOD (BASED ON BGP ROUTES) AND OTHER COMMON MACHINE LEARNING TECHNIQUES
BASED ON THE COORDINATES ROUTES. FOR THE EVALUATION WE USE ‘DATASET B’ USING BOTH ‘GEO’ AND ‘OWNER’ LABELING METHODS

VII. EXAMPLES

We tested here SASA and the other models on a few
interesting deflection cases that were not part of the datasets.
These events are all from recent years, 2017-2020 and we
make their data available.3 All three models that were trained
using the noisy dataset with coordinates identified all the
examples as hijacked.

As our primary motivation for using attention was to gain
the ability to explain the classification of our neural network,
figures 6 and 7 display examples of attention scores using
different attention layers.

A. PayPal

The route from Israel’s academic network to PayPal in Ger-
many is routed through a PayPal gateway in Eastern US and
thus flagged as suspicious (we see many such PayPal routes
from Europe). As Figure 6 shows, both layers highlighted the
US IPs that are responsible for the deflection; however, the use
of sources gains higher explainability: 0.16 scores for the US
IPs compared to 0.02 of the second-highest score, while for
SDPA the US scores are 0.18, but other IPs have similar score:
0.17 and 0.16. Also, note the high score of the US IPs in the
intermediate calculation of the SASA layer (before multiplying
by the source score) 0.42 compared to 0.05 of the second
highest.

B. Deflection to Columbia

A /24 AP, which is owned by StarHub in Singapore, is only
announced through TATA as an upstream provider, and as a

3https://github.com/talshapira/SASA

result, has low visibility. The TATA announcement to Internexa
(AS262589) is leaked to Zayo (AS6461) that exports it due to
no other alternatives. As a result, many routes from the US to
this Singaporean block are routed through Columbia in a route
with a long geographic deflection and valley-free violation.

All three methods (while only SDPA and SDPA-QS-KS
shown) successfully identified the route deflection with an
almost perfect prediction score (above 99.9%). SDPA-QA-KS
identified the problematic route hop with a very distinctive
high attention score, while SDPA, which does not use the
source score failed. SASA also failed in identifying the deflec-
tion root score.

C. Usage of Grey IP Space

A route from Stockholm, Sweden to Budapest, Hungary
(measured in June 2020, but exist for many months) shows
a General Electric unannounced IP address between Magyar
Telekom (AS5483) and Budapest Hitel es Fejlesztesi Bank
(AS30917). This is most likely a loopback interface configu-
ration of Magyar Telekom.

SASA successfully flagged the US hop, with a relatively
high score, while SDPA flagged the Hungarian portion of the
route with a score similar to the Swedish portion of the route.

D. GTT and Orange Peering

The example shows a route from Seattle, WA, US to Paris,
France that involve only two tier-1 providers: GTT (AS3257)
and Orange (AS5511). Until recently, GTT Carried the traffic
to Paris, where it peers with Orange. However, starting from
June 24th, 2020, slightly after 16:00 UTC, the peering point
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Fig. 8. Geo-deflection in Europe - an example of a deflected route that cannot be observed via BGP analysis.

moved to Hong Kong. While we do not suspect this routing
change is malicious due to the parties involved, this is exactly
the type of misconfiguration a hijack alert system should flag.

Figure 7(c) shows that SPDA managed to highlight HK as
the problematic part of the route, while SASA flagged the US
origin.

E. Bangladesh Leak

On September 26th, 2018, between about 7:45 UTC and
14:45, BTCL (AS17494) of Bangladesh leaked over 3500 APs
to Telecom Italia (AS6762) that exported to its peers. As a
result, many routes worldwide were diverted to Bangladesh.

The example in Figure 7 shows a route between the Total
cloud in Los Angles, California, to a Colt IP address in Dublin,
Ireland. The route before the leak was comprised of Total
(AS46562) in LA, GTT in LA, Level 3 from LA to Paris, and
Colt (AS8220) from Paris to Dublin.

Both the SASA and SDPA-QA-KS layers successfully high-
lighted the Bangladeshi hop as the deflection source. SDPA
had the same score for the Bangladeshi and Irish portions of
the route with a similar score for the Singaporean portion.

F. Asian Hijack

In 2016 China Telecom hijacked traffic from several Euro-
pean countries to an Asian government network (details are
anonymized). In this example, we show the route from the
GARR academic network, where Cogent carry the traffic from
Rome, Italy to Los Angeles; there it is peering with China
Telecom that hijacks the traffic through Guangdong, China.

Both the SASA and SDPA-QA-KS layers successfully classi-
fied the route as hijacked. Furthermore, figure 7(e) shows that
SPDA managed to highlight China as the problematic part of
the route, with a relatively high attention score.

G. Geo-Deflection in Europe

On April 2017, a geographic analysis detected a deflec-
tion of a route towards a single AP that belongs to a tier-
2/3 provider in New England from a large cloud provider
in France. The AS-level route, both the one obtained from
traceroute and from BGP announcements, was benign: Hur-
ricane Electric (AS6939) connects two customer networks.
Therefore, an analysis based on the AS-level route (such as
‘VF’) would not flag this route. However, the geography of
the route, traversing Kiev, was highly unusual and extremely
suspicious.

The route was compared to many other routes between
the French provider in France and other destinations in New
England, all these routes where geographically confined to
West Europe and North America. Following a message we

sent to the French provider NOC, the route was immediately
corrected.

As presented in Figure 8, SASA successfully classified the
route as hijacked and highlighted Ukraine as the problematic
part of the route, with a very high attention score.

H. Examples Summary

In general, both the SASA and SDPA-QA-KS layers were
successful in highlighting the cause of the deflection in the
routes, but SASA was better at detecting deflection events.

There is a subtle issue regarding the highlighting of the
problematic portion of the route. Consider the American hop
on the route from Sweden to Hungary (Figure 7(b)). The
reason the US hop is problematic is that it appears in a
continental route in Europe, and there is nothing wrong with
its location on its own. In other words, what is problematic
in the route is the triplet 〈Sweden (source), US (middle),
Hungary (destination)〉. In practice, this is what we would like
the network to learn. Remember, that nowhere in the training
process we directed the network what is wrong, each route
was simply labeled as ‘GREEN’ or ‘RED’.

VIII. DISCUSSION

We showed that by introducing an attention mechanism to
the model, deflected routes’ detection rate improves. We also
showed that in many cases, the attention mechanism highlights
the problematic portion of the route successfully. However,
as discussed in Sec. VII-H, the reason to flag a route as
deflected is not a single segment in it, but the combination of
this segment with source and destination location. As future
work, it will be interesting to force the system to output a
triplet, or alternatively, to disallow it to consider either end of
the route as problematic.

Selecting the right false-alarm rate for the system is not
trivial. If the route monitoring system generates too many false
alarms, it will lose operators’ credibility or simply overwhelm
them with work. Assume that an organization wishes to protect
200 APs each from 50 locations, this results in 10,000 routes
to monitor, and with FA = 0.01, it may result in 100 FAs.
However, routes are highly correlated since routes towards a
destination share the final portions of the route, and routes
emanating from a monitoring point share the same start.
In addition, organizations tend to have several APs in the same
location connected to the same upstream providers. This will
significantly reduce the number of events for the SOC team to
handle, where an event is the collection of all flagged routes
with the same routing problem at the same time. Of course,
with time, a noisy dataset like ‘Dataset B’ will gradually be
cleaned since false alarms will trigger database corrections.
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TABLE VIII

AGENT DISTRIBUTION BY COUNTRY IN OUR DATASETS

We need to acknowledge that traceroute measurements
come with their own problems. Some networks block ICMP
probes [32, Sec. 4.3], but this mostly happens at stub ASes,
which are less important for detecting deflections. Table II
shows that only 4-6% (X data source) of the routers are either
private IP addresses or do not return our probes. This number
is quite small, and is mostly due to a few transit networks.
SASA associates a weight to these type of routers, and it may
be interesting in the future to separate this ‘dataset’ to non-
responsive and private IPs.

Another problematic issue in this paper is the lack of
external ground truth. We strongly believe that our labeling,
at least for the ‘solid’ dataset, is mostly reliable, since this
data is used and eye-balled continuously for monitoring routes.
Indeed, the results for the solid dataset are significantly better
than for the noisy dataset.

IX. CONCLUDING REMARKS

We introduced a novel approach for data-plane (namely
traceroute based) IP hijack detection by classifying geographic
routes, using a deep learning method. As far as we know,
our work is the first to detect IP hijacked routes based on
geography.

In order to geolocate the IP addresses, we used multiple
geolocation services, with various levels of confidence; all
suffer from geolocation errors. To take advantage of the
knowledge of the sources, we developed an attention-based
layer that aimed to deal with multi-source data; we termed it
Source-Aware Self-Attention, SASA. This layer also highlights
the cause of flagging out a problematic route.

We showed that both the SASA and SDPA layers were
successful in highlighting the cause of the deflection in the
routes, but SASA was better at detecting deflection events.
We showed that by training our network on an unbalanced
dataset, we could detect hijacked routes with an accuracy
of 99.24% with 0.80% False Alarm and a detection rate
of 99.52%, based only on geographical data. We also tested
SASA and the other models on a few interesting deflections
cases from 2017-2020, and correctly identified all of them as
hijacked.

Finally, a sophisticated attacker may attempt to hide the
attack by sending ICMP replies that impersonate a legitimate
route. This makes the attack significantly harder to design and
perform. However, an interesting future direction is to extend
the input SASA with delay and TTL in order to make such
impersonation harder.

APPENDIX

AGENT DISTRIBUTION

The location of the agents we used for the generation of the
two datasets is presented in Table VIII.
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