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Optimal Routing in Gossip Networks
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Abstract—In this paper, we introduce the Gossip Network model
where travelers can obtain information about the state of dynamic
networks by gossiping with peer travelers using ad hoc communi-
cation. Travelers then use the gossip information to recourse their
path and find the shortest path to their destination. We study opti-
mal routing in stochastic, time-independent gossip networks, and
demonstrate that an optimal routing policy may direct travelers
to make detours to gather information. A dynamic programming
equation that produces the optimal policy for routing in gossip
networks is presented. In general, the dynamic programming al-
gorithm is intractable; however, for two special cases a polynomial
optimal solution is presented. We show that ordinarily gossiping
helps travelers decrease their expected path cost. However, in some
scenarios, depending on the network parameters, gossiping could
increase the expected path cost. The parameters that determine
the effect of gossiping on the path costs are identified and their
influence is analyzed. This dependency is fairly complex and was
confirmed numerically on grid networks.

Index Terms—Floating car data, online decision problem, peer
to peer networks, routing, shortest path, transportation network.

I. INTRODUCTION

O PTIMAL routing in both deterministic and stochastic net-
works has been extensively studied in the past. While the

solutions for the deterministic problem are well known [1] and
based on the dynamic programming (Bellman-Ford) or label
correcting (Dijkstra) algorithms, the solution to the stochastic
problem depends profoundly on the problem modelling. One
of the main characteristics of the stochastic problem model is
how the information about the stochastic states of the network
is obtained. The introduction of ad hoc communication presents
an opportunity for a new kind of network model—the Gossip
Networks. In this paper, we formulate, for the first time, the
gossip networks model in which mobile agents obtain infor-
mation about the state of a stochastic network by exchanging
information with neighboring agents using peer-to-peer (P2P),
ad hoc communication. Mobile agents then use the exchanged
information to reveal information about the network state and
consequently optimize their routing.

There are varieties of real-life problems that can benefit from
an optimal solution to the problem of routing in gossip networks.
For example, airplanes or vessels can optimize their route by ex-
changing information with their peers. This paper will focus on
another example from the field of transportation. Road con-
gestion is a known and acute urban menace with no signs of
disappearing. There are apparently many suggested approaches
to tackle this problem; one of them is to supply vehicles and
drivers with up-to-date information about road conditions.
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There are two kinds of approaches to supply drivers with in-
formation that can aid them to avoid congestion. One approach is
based on fixed-structure communication networks, for example,
cellular networks or FM/AM radio [2]–[4]; the other approach
is based on ad hoc communication networks. Several innovative
projects propose using ad hoc networks as the communication
infrastructure, for example, FleetNet [5] and CarNet [6].

The advance in technology in recent years helps to bring into
vehicles sophisticated onboard navigation systems at a reason-
able price. Such a system contains a computing device with a
detailed road map, GPS for locating the vehicle on the map,
and communication means. One can use ad hoc communica-
tion networks (such as Wi-Fi) to exchange information between
neighboring vehicles. When two vehicles are at communication
range, they can exchange their information regarding road con-
dition. The road condition information is thus propagated in the
network without any need for external or central infrastructure.
Each time new information is obtained by a vehicle, the onboard
navigation systems recalculate the optimal route from its current
location to the destination. For example, if the navigation system
receives information that one of the streets in its planned path
is blocked, it will plan a new path that avoids the blocked road;
the new path will be the shortest path from the vehicle’s current
position to the destination taking into account the blockage.

Our gossip network model was built based on research done
in “ad hoc networks” and “stochastic shortest path routing.” In
this paper, mobile agents acquire and disseminate information
about road conditions using wireless communication (ad hoc
networks) and use the information to minimize their traveling
time (shortest path problem). There are two networks in our
model, the “road network” on which the mobile agents roam
and the “communication network” on which information flows.
While there is an extensive literature about routing in each of the
networks, to the best of our knowledge, this is the first attempt to
formulate and solve the combined problem: shortest path routing
of mobile agents in the context of gossip ad hoc networks (see
also Section II-C).1 There are currently several ongoing projects
focusing on the idea of mobile agents (for example, vehicles)
exchanging information and forming communication networks
without or with a little help from external infrastructure. Mobile
Ad-hoc Networks (MANET) [7] is an IETF working group set
to standardize these efforts. The FleetNet project [5] aims at the
development and demonstration of a wireless ad hoc network
for intervehicle communications. FleetNet is a consortium of six
companies and three universities looking into mostly the prac-
tical issues of providing drivers and passengers some services
over ad hoc communication. Some of the proposed FleetNet
services are notifications about traffic jams and accidents and

1This paper focuses on the routing of mobile agents on the roads networks
and not on the routing of data packets on the communication networks.
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providing information about nearby available points of interest.
Another project, CarNet [6], demonstrates the use of ad hoc scal-
able routing protocol (Grid) to support IP connectivity as well
as providing services similar to FleetNet. For a comprehensive
overview of Inter-Vehicle ad hoc communication, see [8].

FleetNet, CarNet, and similar projects aim at building com-
munication infrastructure using ad hoc communication and are
examining suitable routing protocols medium access methods,
radio modulation, etc. In this paper, we assume the existence of
such an ad hoc network that enables mobile agents to exchange
information. However, we do not implicitly include here spec-
ification of the ad hoc network such as routing or multi-access
communication protocols; instead we abstract them into the
gossip probability, the probability that a mobile agent will re-
ceive information about the status of some roads in the network
from another mobile agents. The gossip probability is defined
formally in Section II.

The problem of shortest path routing was investigated exten-
sively in the literature. For a comprehensive summary of the
various efforts in the field of transportation, see [9].

In this paper, we assume time independence, i.e., the network
does not change during the course of the travel. Some of the
road conditions are known to be alternating; however, a trav-
eler may not know in advance the current condition of all these
roads, termed stochastic roads. We assume that no parking at
roads or junctions is allowed to optimize the journey, and once
a junction is reached the weights of all the roads that emerge
from that junction become known. We investigate two different
models of weight correlation. The first is the independent weight
correlation model (G-IWC), where there is no correlation be-
tween the states of different edges. The second is the dependent
weight correlation model (G-DWC), where the network can be
in several different states, and each state determines the weights
of all stochastic edges [10]. Note that the G-IWC model is a
generalization of the G-DWC model with substantially more
states. The rationale behind the G-DWC model is that in real-
life transportation systems there is a correlation between roads
weights; usually a traffic jam in one road affects the roads in its
vicinity.

When the shortest path model is stochastic, like in this paper,
the information about the actual state of the stochastic edges
plays a crucial role in finding the optimal routing solution. Fur-
thermore, due to the dynamic nature of the problem the solution
is not a path but rather a policy that directs the traveler accord-
ing to the information he obtains. In the literature, there are
several papers that discuss optimal routing policies in stochastic
networks where the traveler can recourse his path according to
information obtained during travel. However, the basic differ-
ence between these models and ours is that in gossip networks
the information is obtained by gossiping with neighboring trav-
elers; thus, a traveler can obtain data about the state of remote
stochastic roads. In all the other models we survey, the only
way to obtain information about the state of a road is to visit the
junction it emanates from. Andreatta and Romeo [11] assume
that once a blockage is encountered a recourse path that consists
of only deterministic roads is used. Orda et al. [12] investigated
a model where link delay changes according to Markov chains;

they model several problems and showed that, in general, the
problems are intractable. Polychronopoulos and Tsitsiklis [10]
investigated a network where there is a correlation between the
road weights. In their model, a traveler can deduce the stochastic
state by visiting enough roads. Waller and Ziliaskopoulos [13]
solved a model with dependency between successor roads and
a model with time dependency for the same road.

The primary contribution of this paper is in the introduc-
tion and analysis of the gossip model and the new directions it
opens for building P2P mobile systems. We choose to introduce
the subject using a simplified model that allowed us in-depth
analysis. The analysis presented in this paper produced some
interesting results which give us insight into the characteristics
of traveling in gossip networks. The introduction of information
exchange leads to unique optimal routing policies. In this pa-
per we will show that sometimes it is worth taking a detour to
obtain more information about the state of the stochastic edges.
The extra cost of the short detour can be compensated by the
additional information gained, information that can improve the
selection of the continuing path. Furthermore, we were able to
quantify an optimal policy that balances between information
gathering costs and path costs. An other main contribution is
the regime state diagram we produced. Using the diagram, one
can determine the influence of gossiping on the traveling costs
in different network characteristics.

The rest of the paper is organized as follows. In the next sec-
tion, the formal model of the gossip networks is introduced and
an example that demonstrates the characteristics of the model is
presented. An algorithm for optimal routing in gossip networks
that is based on dynamic programming is developed in Section
III. In Section IV, we discuss the implications of traveling in
gossip networks. Then, in Section V, we use numerical analysis
to demonstrate the influence of the various model parameters
on the network behaviors. Finally, in Section VI, we summarize
and highlight our main findings while providing directions for
future work.

II. MODEL AND DEFINITIONS

A. The Formal Model

The above discussion leads to the following formal model.
The network2 is represented by a directed graph G = (V,E),
where V is the set of vertices, and E is the set of edges |V | =
n and |E| = m. An edge e ∈ E is associated with a discrete
random weight variable we. Edges with a degenerated weight
function that has only one value are termed deterministic, and we
denote the set of these edges byD ⊆ E. The number of edges in
the network with stochastic weights (namely, nondeterministic)
is denoted by δ = |E \D|. We assume that under all weight
distributions there are no negative cost cycles in the network
and there is always a path between source and destination.

2As mentioned above, there are two networks in our model, the road network
and the communication network. In this paper, when we say “network” we refer
to the road network. We assume the existence of communication network that
enables a mobile agent to exchange information, but in this paper we do not
include it in the formal model implicitly; it is included in the gossip probability
presented below.
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In the G-IWC model, the weights we of the stochastic edges
are random variables with discrete probability distribution that
has βe states. The expected cost of an edge is w̄e =

∑βe

s=1 w
s
eq

s
e ,

where qse is the probability of an edge e to have the weight ws
e .

We denote by ŵe the actual weight of the edge e. In the G-DWC
model, the network can be in only R realizations; each r ∈ R
realization determines the states of the network and thus the
weights wr

e of all the stochastic edges.
Traveling agents (TAs) are roaming the network. Each

TA stores internally the weights of the stochastic edges
in an information vector, I{·}. For example, an infor-
mation vector of a traveler could look like this: I =
{ŵ1,X, ŵ3, X, . . . ,X,X, ŵδ}. For known edges, those that the
traveler visited or received information about, the weights are
written down explicitly, ŵ1, ŵ3, ŵδ . Unknown edge weights are
denoted byX . The number of possible states of the information
vector in the G-IWC model lI is given by

lI =
∏

e∈E\D
(βe + 1) (1)

and in the G-DWC model, the number of different information
vector states is given by

lD =
R∑

i=1

(
R
i

)
= 2R − 1. (2)

When two or more TAs are within communication range, they
can exchange their information vectors in order to gain missing
data. The gossip probability is the probability that when a TA
traverses an edge it will update his information vector.

P (s, s′, T (i, j)) = P{I(j) = s′|I(i) = s, T (i, j)} (3)

where s, s′ ∈ I are the information vector before and after the
edge (i, j) traversal, respectively; I(i) is the information vector
at vertex i ∈ V ; and T (i, j) is the topology probability. The
topology probability is the probability that a TA will receive
information from other TAs during the traversal on an edge. The
topology probability is determined by aspects, like the number of
TAs around the traveler, the other TAs previous paths, physical
obstacles that interfere with the wireless communication, etc.
It is a characteristic of the network structure and the flows of
TAs in the network. Assuming that there are “enough” mobile
agents in the network, T (i, j) is a vector of probabilities, where
each element corresponds to some stochastic network edge.
For example, T (i, j) = {1, 0.5, . . . 0} means that on average
when the TA slates edge (i, j) it will learn about stochastic
edges 1, 2, and δ with probability 1, 0.5, and zero, respectively.
The gossip probability depends on the topology probability and
on the information vector before and after the edge traversal.
For example, the probability to change an information vector
element from {. . . , ŵ, . . .} to {. . . , X, . . .} is zero. Regardless
of the topology probability, a known weight can not be changed
into unknown.

In this paper, we are looking for the optimal routing policy of
a TA that starts at the source vertex s with information vector
I(s) and travels to a destination vertex t. We assume that the
TA knows a priori the network structure, weights distribution,

and the topology probability. We are looking for an optimal
routing policy π∗ with minimal expected cost C∗(s, t, I(s)) of
all possible routing policies πk ∈ π:

∀πk ∈ πC∗(s, t, I(s)) ≤ Ck(s, t, I(s)).

B. Assumptions and Reality

The formal model of this paper has several assumptions. In
this section, we summarize these assumptions and relate them to
real-life scenarios in transportation networks. The first assump-
tion is that the network is time independent. In many situations,
a driver can assume that during his commute (30 to 60 minutes)
the traffic patterns in his area does not change significantly.
Thus, in many cases, an optimal routing policy calculated at the
beginning of the journey will yield satisfying results throughout
the journey.

Another assumption is that the agent knows a priori the net-
work structure, edges weight distribution, and topology prob-
ability. While network structure can be obtained from any ge-
ographical information system, the edges weight and topology
probability are calculated from historical information gathered
over time. Currently there are several commercial and academic
projects that use historical data to predict future traffic patterns,
for example, MIT’s DynaMIT project [14]. While the edges
weight distribution can be computed directly from the historical
traffic data, in order to compute the topology probability one
needs information about the agent’s movement in the network.
Given that information, we can calculate and record fairly easily
the edges weight distribution and topological probability for a
given time. For example, we will have one distribution for the
morning commute, a second for the evening commute, a third
for holidays, etc. Then, each time the agent will compute his op-
timal routing policy using the gossip network time independent
algorithm he will use the appropriate distributions.

Any probability distribution is meaningful only when there
are enough events. Thus, in order to calculate the edges weight
distribution one needs enough historical information both over
time and network edges. The calculation of the topology proba-
bility requires information from enough agents in the network.
In a study done by Kraus et al. [15], it was shown that when the
portion of cars with gossiping capability is anywhere between
1% and 60% there is a reduction in the average delay of the
gossiping cars, and in most of the region also in the average
delay of the total car population. Researchers at DLR, German
Aerospace Center, Germany were able to deduct meaningful
information about real-time traffic using several hundred taxis
in Berlin, Nuremberg, and Vienna [16].

C. Comparison With Other Ad Hoc Models

There is a fairly large body of work that deals with gossiping
in ad hoc networks; however, the model and thus techniques
used in these works is different from our work. In general, the
goal in most of the ad hoc network literature is to seek efficient
protocols for information exchange minimizing communication
overhead, power consumption, etc, while ensuring message de-
livery. The main focus of our paper is to propose an optimal
routing algorithm that minimizes travel costs.
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Fig. 1. An example of the influence of gossiping on routing. We are looking
for the optimal routing policy between the vertices s and t where the edge (j, j′)
is stochastic and on edge (i, s) the traveler can obtain information about the
stochastic edge. The path {s, i, s} is called an information gathering loop (IGL).

In this paper, gossiping is used to exchange information
about the weights of the stochastic edges between agents. Hass
et al. [17] built ad hoc routing, protocols where gossiping is used
to reduce the protocol’s overhead. Kulik et al. [18] proposed the
SPIN family of protocols that use gossiping to overcome prob-
lems such as implosion, overlap, and resource blindness com-
mon to ad hoc networks. Braginsky and Estrin [19] introduced
a scheme that allows queries to be delivered while providing
trade-off between setup overhead and delivery reliability. While
it is possible to combine our modelling and results for these
works, it is certainly not straightforward due to the differences
between the underlying assumptions.

First, in our model, the network topology is assumed to be
known to a large extent and mostly the weights are unknown. In
ad hoc networks, the network is assumed to change so frequently
that the overhead to learn its topology is too large to become
realistic. Thus, in our case we collect knowledge about the state
of edges, while in ad hoc networks the effort is to learn a route
(sometimes with the ability to improve it based on cost) but
there is no attempt to learn the network state and optimize based
on this.

Another major difference is that in our case we assume the
existence of a priori knowledge about the statistics of the net-
work, such as the weight distribution of the links, the probability
to learn about the state of a certain link by traveling on another,
etc. In most other ad hoc network models, such knowledge is
never assumed.

In other ad hoc networks, one has full control of the ability
to distribute information about the networks by changing the
control algorithm. In our case, information is flooded by cars
whose drivers selected to mount special gossip equipment, but
the drivers are going on their own private business. Thus we do
not control the rate and direction of the information dissemi-
nation. This lack of control disqualifies many of the solutions
suggested in the context of ad hoc networks in our model.

D. An Example

In the example network presented in Fig. 1, a traveler is
located at vertex s and is looking for the optimal routing policy
to vertex t. In this network, there is one (δ = 1) stochastic
edge, (j, j′), that has two possible states. With probability qujj′ =
ξU the edge is in the “UP” state where wu

(j,j′) = 1, and with

probability qdjj′ = (1− ξU ) the edge is in the “DOWN” state
where wd

(j,j′) = 10 000. The traveler can obtain information
about the state of the edge (j, j′) only when traversing the edge
(i, s), with a topology probability of T (i, s) = ξT . The gossip
probability of this network is

P ({X}, {X}, T (i, s)) = 1− ξT
P ({X}, {1}, T (i, s)) = ξT

P ({X}, {10000}, T (i, s)) = ξT

P ({1}, {1}, T (i, s)) = 1

P ({10000}, {10000}, T (i, s)) = 1

Else ∀u, v ∈ V ˜P (I(u), I(v), T (u, v)) = 0.

The traveler has to choose between different travel options:
1) The “safe” path through vertex k which guarantees a cost
of 1001; 2) the “risky”3 path through vertex j with cost that
depends on the state of edge (j, j′), either 10 002 or 3; or 3)
travel to vertex i, obtain information about the status of edge,
(j, j′), and then, according to the obtained information, choose
whether to go through vertex k, j or return to vertex i.

Next we will calculate the expected cost of the different rout-
ing policies. The cost of the path through vertex k is determin-
istic and does not depend on the a priori knowledge of the state
of the edge (j, j′):

C(s, t, {·})k = 1001. (4)

The cost of the path through vertex j without any a priori
knowledge about the state of the edge (j, j′) is

C(s, t, {X})j = 10002(1 − ξU ) + 3ξU . (5)

If the traveler needs to choose between traveling through k
or j (without first traveling to vertex i), then his optimal routing
policy depends on the value of his information vector:

C∗(s, t, {X})kj = min(1001, (1 − ξU )10002 + 3ξU )

C∗(s, t, {1})kj = 3

C∗(s, t, {10000})kj = 1001.

If the traveler knows that the stochastic edge is in the DOWN
state, he will travel to vertex k; in the case he knows that the
edge is in the UP state, he will travel to vertex j; and in the case
the traveler does not know the state of the stochastic edge he
will decide according to the value of ξU .

When the traveler moves to vertex i without any a priori
knowledge about the state of the edge (j, j′), the expected cost
of his routing policy assuming one trial to obtain information is

C(s, t, {X})(1)i = 2 + ξT [ξUC∗(s, t, {1})kj ]

+ (1− ξU )C∗(s, t, {10000})kj ]

+ (1− ξT )C∗(s, t, {X})kj

3The risky policy is taken by a traveler who must reach the destination at
some specific time (for example, to catch a plane that leaves in ten time units).
If not there by that time, the traveler cares less about the path cost (anyways, he
needs to reschedule).
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Fig. 2. The relation between the UP and gossip probabilities for dif-
ferent w(i,s) values. The area above the line is where C∗(s, t, {X})i <

C∗(s, t, {X})kj and the traveler will cycle for information.

= 2 + ξT [3ξU + 1001(1 − ξU )]

+ (1− ξT )C∗(s, t, {X})kj . (6)

When the traveler routing policy is to cycle between vertices
s and i until he obtains information, the expected number of
cycles he will need is 1/ξT . Therefore

C(s, t, {X})i = 2(1/ξT ) + 3ξU + 1001(1 − ξU ).

For the above example there is a threshold topological prob-
ability ξ0 such that for ξT ≥ ξ0

C∗(s, t, {X})i < C∗(s, t, {X})kj . (7)

This means that for ξT ≥ ξ0 the traveler’s optimal routing pol-
icy when there is no information is to make a detour through
node i until the network obtains information about the state of
the stochastic edge. In this paper we call the path {s, i, s} an
information gathering loop (IGL). Fig. 2 illustrates this by plot-
ting the equilibrium line of (7) for different values of ˆw(i,s).
The area above the line is where the inequality holds and the
traveler is making a detour to gather information. The minimum
of the plots in Fig. 2 is when (5) and (4) are equal, for ˆw(i,s) at
ξU = 0.90028 in this example.

The optimal routing policy for a traveler who starts on vertex
s is outlined in the EXAMPLE POLICY below. And the corre-
sponding routing table for source vertex s is outlined in Table I.

EXAMPLE POLICY

IF ξT ≥ ξ0

WHILE I = {X} cycle in the path {s, i, s}
IF I = {1}

Then take the path {s, j, j′, t}
ELSE IF I = {10000}

Then take the path {s, k, t}
ELSE IF I = {X}

TABLE I
ROUTING TABLE OF THE SOURCE VERTEX s. THE VALUE OF α IS k OR j

ACCORDING TO THE VALUE OF ξU .

Then take the path min({s, j, j′, t}, {s, k, t})
END

III. THE ROUTING ALGORITHM

A. Solution Approach

The problem of finding the optimal routing in gossip net-
works belongs to the class of online decision problems. In these
problems, an agent is faced with the opportunity of influencing
the behaviors of a probabilistic system as it evolves. At each
step the agent receives information about the system state and
performs an action accordingly. His goal is to choose a sequence
of actions which causes the system to perform optimally with
respect to some predetermined criteria. Due to the stochastic na-
ture of the system, decisions must anticipate the costs associated
with future system states. In the literature, such problems can
be found under the topics of Markov decision processes [20],
stochastic programming [21], and optimal control [22]. Similar
to other online decision problems, we solve the problem of op-
timal routing in gossip networks using dynamic programming
and in general share the same “curse of dimensionality” [23],
which leads to an intractable solution. What is unique about
our model is the way the agents learn about the state of the
network. An optimal policy in gossip networks needs to seek
the optimized balance between the path cost and the cost of
gathering information. For example, the optimal policy might
direct the agent to a path with higher cost but with higher prob-
ability to gather important information. This policy will reduce
the agent’s total expected cost. Unlike most of the online de-
cision problems, in gossip networks decisions must anticipate
both the edge costs and the information gathering opportunities
associated with future system states. It is well known through-
out the online decision problem literature that information pays
off. In our algorithm we were able to quantify the importance
of information.

The optimal routing policy in gossip networks is the one
with the minimum expected cost from source to destination
for a given information vector. Next we will show how one can
calculate the expected cost of a routing policy in the network, and
in Section III-B we will introduce an algorithm that uses these
calculations to find the optimal routing policy to a destination.

A traveler starts his journey from vertex s with information
vector I(s) and wishes to reach vertex t. During his journey,
there is a probability that he will learn, through gossiping, about
the states of the stochastic edges and accordingly update his
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Fig. 3. The GOSSIP DP algorithm.

information vector I( · ). At every vertex r ∈ V he reaches, the
traveler makes a routing decision, based on his updated infor-
mation vector. The expected cost of a routing policy between
a source vertex s and a destination vertex t through a neighbor
vertex r is

C(s, t, I(s))r = ŵ(s,r) +
∑

I(r)∈B(I(s),(s,r))

P (I(s), I(r), T (s, r))

·Q(I(r)) · C(r, t, I(r)). (8)

The weight of edge (s, r) is known and its value is ŵ(s,r).
B(I(s), (s, r)) is the set of all the possible information vec-
tors I(r) of the traveler when reaching vertex r, assuming
that at vertex s the network has the information vector I(s).
P (I(s), I(r), T (r, s)) is the gossip probability that the infor-
mation vector will change from I(s) into I(r) on the edge
(s, r). Q(I(r)) is the a priori probability that the network G is
in a state corresponding to the information in I(r).

B. Dynamic Programming Algorithm

In this section, we present the GOSSIP DP algorithm that
builds the optimal routing tables for the gossip network; the
algorithm is outlined in Fig. 3. A formal proof of the algorithm
correctness is provided below in Section III-D.

Fig. 4. The relaxation process for one state of one edge.

The optimal routing policy from vertex s to vertex t in the
gossip network C∗(s, t, I(s)) is the one that minimizes the ex-
pression in (8). Namely, it is the one that selects the policy with
the smallest expected cost. Thus, we can write the following
dynamic program:

C∗(s, t, I(s)) = min
r∈Ns


wI(s)

(s,r)

+
∑

I(r)∈B(I(s),(s,r))

P (I(s), I(r), T (s, r))

· Q(I(r)) · C∗(r, t, I(r))


 (9)

where Ni is the group of neighbors of vertex i and wI(s)
(s,r) is the

weight of the edge (s, r) assuming that the information state be-
fore is I(s). When the information vector contains information
about the state of vertex (s, r), the weight is known ŵ; in all
other cases, we take the weight to be the expected weight w̄(s,r)

over all the states according to the value of I(s).
In Bellman-Ford’s dynamic programming algorithm for the

deterministic shortest path [1], one finds for each vertex the
shortest path to a destination. In gossip networks, using the al-
gorithm GOSSIP DP in Fig. 3, we find for each vertex the
shortest path for each possible state of the vertex’s information
vector I( · ).

Specifically, for each vertex u ∈ V we keep a table TBL[u]
(see Fig. 4) that has l rows [l is defined in (1) or (2) according
of the model in use]. Each row holds the information vector
state (sk ∈ I), the distance to destination (DD), and a pointer
to next vertex (PN). The first steps of the GOSSIP DP, lines 1
to 6, initialize this data structure.

In the main loop of the algorithm, lines 7 to 11, we iterate
over all the edges of the network and relax each edge. This loop
continues while at least one of the edges is relaxed.

In the function G RELAX, we relax for a specific edge all the
possible information vectors. The relaxation process for each
edge (u, v) and for each information vector state sk, lines 16 to
20, is
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DD[u, sk] = wsk

(u,v)

+
l∑

m=1

P (sk, sm, T (u, v))Q(sm)DD[v, sm]. (10)

For each source vertex state sk, we check what is the prob-
ability that during the travel on the edge (u, v) the state sk
will change into sm (m = 1 . . . l). Each gossip probability
P (sk, sm, T (u, v)) is multiplied by the destination vertex dis-
tance DD[v, sm] and the probability Q(sm) that the network
will be in state sm.

The iterations stop when for all edges and information vec-
tors the difference between iteration weights is less than ε, as
shown in line 17. In the classical algorithm ε = 0, in our case
ε is a small positive constant. This condition overcomes a situ-
ation that our network contains an information gathering loop
as we saw in the example from Section II-D above will be and
illustrated in Section III-C below. The parameter ε is chosen so
that ε� wsk

(u,v) for all edges (u, v) ∈ E and information states
sk ∈ I(s) so that it will come into play only when there are
information gathering loops. For a complete discussion of the
stopping conditions, see the proof of the algorithm correctness
in Section III-D.

The algorithm GOSSIP DP is used to produce the optimal
routing policy in gossip networks by the following steps: Before
the traveler starts his journey, he builds his optimal routing
policy by calculating TBL[ · ] for all the vertices of the network
using the algorithm GOSSIP DP. During his journey, the traveler
updates his information vector and navigates on the network
using the information in TBL[ · ]. Every time the traveler reaches
a new vertex u ∈ V with information vector state sk = I(u), he
looks for the next vertex in PN [u, sk]. Later in Section V, we
use the GOSSIP DP to derive our numerical analysis.

C. GOSSIP DP Execution Example

Next we will explore the behavior of the algorithm
GOSSIP DP on a network with an information gathering loop,
like the one presented in Fig. 1. In the following discussion,
the information gathering loop has two edges, the first with
the cost of L1, the second with the cost of L2. The total
cost of the loop is L = L1 + L2. When we travel on the sec-
ond edge of the loop, the probability to gather information is
ξT = P ({X}, {0/1}, T (i, s)). The optimal cost from source s
to destination twhen the traveler has information (I(s) �= {X})
isZ and without information (I(s) = {X}) is Y . Following the
dynamic programming iterations, when vertex s is k hops from
the destination the optimal cost is

DDk[s, {X}] = Y
DDk[i, {X}] = ∞.

The optimal cost from vertex i to the destination is infinity due
to the fact that fork hops there is no path from i to the destination.
Moving to the next iteration of the dynamic programming and
adding one hop, we get for the optimal cost with k + 1 hops

DDk+1[s, {X}] = Y

DDk+1[i, {X}] = L2 + ξT · Z + (1− ξT )DDk[s, {X}]
= L2 + ξT · Z + (1− ξT )Y.

The cost of DDk+1[i, {X}] was calculated using (10). After
adding another hop to the optimal cost,

DDk+2[s, {X}] = L1 + DDk+1[i, {X}]
= L+ ξT · Z + (1− ξT )Y

DDk+2[i, {X}] = L2 + ξT · Z + (1− ξT )Y.

In the (k + 2) iteration, the dynamic programming chose to
cycle in the loop instead of traveling directly to the destination.
For that to happen, the expected cost of the path with a loop
should be smaller than the path without a loop, and mathemati-
cally

DDk+2[s, {X}] < Y
L+ ξT · Z + (1− ξT )Y < Y

L < ξT (Y − Z). (11)

The weight of the loop (L) should be smaller than the costs
of expected gain from the information in the loop (ξT (Y − Z)).
After adding another hop, we receive

DDk+3[s, {X}] = L1 + DDk+2[i, {X}]
= L+ ξT · Z + (1− ξT )Y

DDk+3[i, {X}] = L2 + ξT · Z + (1− ξT )DDk+2[s, {X}]
= L2 + ξT · Z

+ (1− ξT )(L+ ξT · Z + (1− ξT )Y ).

In the general case, for a path with k + 2n+ 1 hops we
receive

DDk+2n[s, {X}] = L1 + DDk+2n[i, {X}]
= L+ ξT · Z + (1− ξT )[L+ ξT · Z

+ (1− ξT )2(L+ ξT · Z)

+ · · ·+ (1− ξT )n−1(L+ ξT · Z)

+ (1− ξT )nY ]

= (L+ ξT · Z)
n−1∑
j=0

(1− ξT )j

+ (1− ξT )nY

= (L+ ξT · Z)((1− (1− ξT )n−1)/ξT

+ (1− ξT )nY.

For each two hops we add in the dynamic programming, the
optimal path adds another cycle. The endless cycling is due to
the fact that each cycle reduces the optimal cost. However, the
costs of the optimal policy with endless cycling converge

lim
n→∞

DDk+2n[s, {X}] = L/ξT + Z. (12)

One should notice that although the optimal policy in this
case instructs the traveler to cycle endlessly when he has no
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information about the network state, with probability one the
traveler will not cycle endlessly. When the traveler follows this
policy, he will eventually gather information and then use a
suitable policy to the destination.

In summary, when the optimal policy has cycles, following
the condition in (11), consecutive iterations of the dynamic
programming continue to instruct the optimal path to cycle,
where each iteration decreases the optimal policy costs. This
value converges to L/ξT + Z in our example.

If we choose some ε and stop the dynamic programming when
the cost improvement between consecutive iterations is smaller
than ε, in our example when

0 ≤ DDk+j [s, {X}] −DDk+j+2[s, {X}] < ε

then we are certain that the dynamic programming algorithm
stops after a finite number of steps with a policy which is optimal
or at most ε away from optimal. A formal proof is given in the
next section.

D. GOSSIP DP Correctness

The proof that the algorithm GOSSIP DP in Fig. 3 provides
the optimal solution for routing in gossip networks is a direct
extension of a deterministic Bellman-Ford proof [1]. There are
two main differences between our algorithm and the classical
one. The first difference lies in the fact that in GOSSIP DP
there are several possible information states for each vertex
compared to one deterministic state in the classical Bellman-
Ford algorithm. Another major difference lies in the fact that in
GOSSIP DP network loops can be beneficial, as illustrated in
Section III-C.

Consider the GOSSIP DP algorithm in Fig. 3 and assume the
following:

i) There is at least one path from each vertex v ∈ V and state
sk ∈ I( · ) to destination t.

ii) There are no negative weight cycles in the graph G.
Denote by TBLi[v, sk] the routing tables of vertex v with

information vector sk when the length of the path from the
source vertex v to the destination vertex t has at most i hops.
The relaxation presented in (10) can be written as

DDi+1[v, sk] = min
u

[
wsk

(v,u) + D̄Di,sk

(vu)

]

where we used the initialization ∀i,∀sk ∈ I( · )DDi[t, sk] = 0
and D̄Di,sk

(vu) is the expected weight over all the possible infor-
mation vector states

D̄Di,sk

(vu) ≡
l∑

sj =1

P (sk, sj , T (v, u))Q(sj)DDi[u, sj ]. (13)

In the following, we define an iteration as performing the
relaxation process for all the possible edges e ∈ E and for each
edge for all its possible information states sk ∈ I( · ).

We begin our algorithm correctness proof with three lemmas.
The first, Lemma 3.1, proves that in each iteration the algo-
rithm’s routing tables contain the optimal policy. The second,
Lemma 3.2, and the third, Lemma 3.3, prove that the algorithm
terminates with the optimal polices. The second lemma (3.2) is

for the case of a network without information gathering loops
and the third lemma (3.3) with them.

Lemma 3.1 (GOSSIP DP Optimal Policy): The values of the
routing tables TBLi[v, sk] generated by the GOSSIP DP algo-
rithm contain the optimal policy information for v, sk, and i.

Proof: We prove by induction the maximum number of
hops in a policy path.

For the induction base, we observe that the routing tables for
paths with a length of one edge is

DD1[v, sk] = wsk

(v,t)∀v ∈ V, sk ∈ I.
For all vertex u ∈ V that are not neighbors of the destination

t, we denote wsk

(u,t) = ∞. So DD1[v, sk] is indeed equal to the
optimal policy from v to t for paths with length ≤ 1.

Suppose that TBLi[v, sk] contains the optimal policy with
paths that contain at most i hops from all v ∈ V and for all sk ∈
I . We will now show that TBLi+1[v, sk], which we construct
in the GOSSIP DP algorithm, contains the optimal policy for
paths that contain at most i+ 1 hops from all v ∈ V and for
all sk ∈ I . Indeed, an optimal policy from v to t either consists
of less than i+ 1 hops (in this case TBLi[v, sk] contains the
optimal policy), or else it consists of i+ 1 hops with the first
being (v, u) for some u, followed by an i-edge policy from u to
t. The latter policy must be the optimal policy to reach t from
u with a length shorter than i+ 1 hops (otherwise, we could
use the optimal policy with at most i and obtain a better policy
for at most i+ 1). Denoting the cost of the optimal policy that
contains at most i+ 1 hops by OPi+1,

OPi+1 = min
{
DDi[v, sk],min

u

(
wsk

(v,u) + D̄Di,sk

(vu)

)}
. (14)

Using the induction hypothesis, we have DDm[v, sk] ≤
DDm−1[v, sk] for all m ≤ i. The set of policies that has at
maximumm hops contains the corresponding set of polices that
has at maximumm− 1 hops. Therefore,

DDi+1[v, sk] = min
u

[
wsk

(v,u) + D̄Di,sk

(vu)

]

≤ min
u

[
wsk

(v,u) + D̄Di−1,sk

(vu)

]

= DDi[v, sk]. (15)

Furthermore, we have for all v ∈ V and sk ∈ I
DDi[v, sk] ≤ DD1[v, sk] = wsk

(v,t) = wsk

(v,u) + DDi[t, sk].

Thus, from (14) we obtain

OPi+1[v, sk] = min
{
DDi[v, sk],min

u

(
wsk

(v,u) + D̄Di,sk

(vu)

)}

= min{DDi[v, sk],DDi+1[v, sk]}.
In view of (15), DDi+1[v, sk] ≤ DDi[v, sk]. This yields

OPi+1[v, sk] = DDi+1[v, sk]

Completing the induction proof. �
Lemma 3.2 (GOSSIP DP Termination Without IGL): The al-

gorithm GOSSIP DP terminates after j < |V | iterations when
there are no information gathering loops in the network. At
termination PNj [v, sk] contains the optimal policies.
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Proof: In Lemma 3.1, we proved that at any iteration the
routing tables contain the optimal policy for that iteration. Here
we need to prove that the algorithm terminates, and that it does
not terminate too soon, i.e., running the algorithm further will
not reduce the optimal cost.

For a given information state, adding hops to the optimal
policy could reduce its cost until the optimal policy contains
at most all the edges of the network. Adding more hops in this
situation can only increase the policy costs under the assumption
that there are no negative weight loops in the network. Thus, at
some point the termination condition, line 17 of the algorithm
GOSSIP DP, will come into effect and terminate the algorithm.
In the iterations notation, this condition becomes

∀v ∈ V, sk ∈ I(·)
0 ≤ DDh−1[v, sk]−DDh[v, sk] < ε. (16)

The algorithm terminates with the optimal policies and not
before due to the fact that the stopping condition in (16) does
not come into effect until the optimal path contains the optimal
number of hops.

The value of ε is chosen such that

∀(u, v) ∈ E, sk ∈ I(·) ε� wsk

(u,v).

In each iteration until all optimal paths are found, at least one
vertex decreases its current cost in the order of an edge weight.

Thus, when there are no IGL in the network the algorithm
GOSSIP DP terminates after at most |V | iterations, and when
it terminates the routing tables contain the optimal polices.

Lemma 3.3 (GOSSIP DP Termination With IGL): The algo-
rithm GOSSIP DP terminates after at most j = f(ε) iterations,
when there are information gathering loops in the network. At
termination PNj [v, sk] contains the optimal policies up to a
factor of ε.

Proof: Following Lemma 3.2 here we need to demonstrate
the effect of adding IGLs to the network. We illustrated in Sec-
tion III-C that when adding an IGL to a network at some point the
optimal policy directs the traveller to cycle. Each cycle reduces
the policy costs further due to the increase in the probability to
gather information. Thus, if the optimal policy starts to cycle, it
will cycle forever. The stopping condition, (16), ensures that the
algorithm stops and does not run forever. Because the optimal
policy is set to cycle forever, stopping the cycling under the con-
ditions in (16) does not change the optimal policy. However, we
stop the cycling and do not allow the optimal policy cost to con-
verge to its final value. Thus, the loop can carry an error in the
order of ε. At most we can havem = |E| loops in the network;
thus, the overall error is O(m · ε). If we define ε′ = ε ·m, we
can conclude that at termination PNj [v, sk] contains the optimal
policies up to a factor of ε′.

Theorem 3.1 (GOSSIP DP Correctness): The algorithm
GOSSIP DP provides the optimal policy for gossip networks
when there are no information gathering loops (IGLs). When
there are IGLs, the algorithm provides an optimal +ε approxi-
mation.

Proof: In order to show the GOSSIP DP algorithm cor-
rectness, we need to prove the following;

a) At each iteration the algorithm contains the optimal policy
for that iteration. This was proved in Lemma 3.1.

b) When the network does not contain an information gather-
ing loop, the algorithm terminates with the optimal policy
after j < |V | iterations. This was proved in Lemma 3.2.

c) When the network does contain an information gathering
loop, the algorithm terminates with the optimal policy up
to a factor of ε after j = f(ε) iterations. This was proved
in Lemma 3.3.

E. Complexity of G-IWC and G-DWC

Theorem 3.2: In the case there are no information gather-
ing loops in the network, the complexity of the GOSSIP DP
algorithm under the G-IWC model is O(nmδ(2β + 1)δ).

Proof: When there is no correlation between the edges
weights, we must examine all the edges (O(|E|)). For each edge
we must examine all the source vertex stochastic states (O(lI)),
and for each source vertex stochastic state we examine all the
destination vertex’s stochastic states (O(lI)). Here we assume
that the number of stochastic states is bounded by β. Notice,
however, that not all state transfers are possible and actually
the number of possible state transfers we need to examine is
only (2β + 1)δ . The first β + 1 states are for the transfer from
state {X} to all the available states; the second β states are for
staying in the same state when the weight of the stochastic edge
is known. In each state transfer, we need to calculate the transfer
probability P and the a priori probability Q. For that we need
to examine all stochastic edgesO(δ). In the worst case, a vertex
has O(|V |) neighbors and the algorithm terminates either after
repeating for each of the neighbors or when there is no difference
between successive iterations.

Theorem 3.3: The complexity of the GOSSIP DP algorithm
under the G-DWC model is O(nmδ22R).

Proof: The complexity of the GOSSIP DP algorithm un-
der the G-DWC model is similar to the complexity of the algo-
rithm under the G-IWC model. The only difference is that we
need to examine O(lD) transfer states instead of O(lI) states.
According to (2) O(lI) = 2R.

Although the optimal solution to the gossip networks prob-
lem is intractable in general, we presented above two special
cases where the optimal solution is polynomial in respect to the
network size. In the first case, a polynomial solution is obtained
when the number of stochastic edges δ is small. The second case
is when the number of realizations in the network is relatively
small.

IV. DISCUSSION

A. Gossiping and Learning

In this section, we will illustrate the importance of gossiping
by comparing the learning rates of the gossip and nongossip
travelers. We assume the G-DWC model with R possible real-
izations. When the traveler starts his journey, he does not know
what is the current network realization r ∈ R. Each time he
gathers information about some edge weights, he can elimi-
nate zero or more network realizations which are inconsistent
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with the obtained weight. Depending on the network weights
distribution, the traveler will be able to determine the current
realization of the network after obtaining information about the
state of enough edges. Since each time the traveler visits a ver-
tex, he gathers information about the state of all the emerging
roads. We define information vertices as the set of vertices the
traveler needs to visit in order to find the current network re-
alization, and denote it by k. In Section IV-B, we assume that
the traveler does not visit a vertex more than once and that the
information vertices are distributed uniformly at random in the
network.

We first analyze the nongossip traveler, which we call a step-
by-step (SBS) traveler. He receives information about a vertex
only when he visits it. The probability that after ⊂ steps in the
network (visiting ⊂ vertices) the SBS traveler already visited j
out of the k information vertices is given by the hypergeometric
distribution

Pr(n, k, i;x = j) =

(
k
j

) (
n−k
i− j

)
(

n
i

) where j ≤ k; j ≤ i ≤ n.

The probability that after visiting i vertices the SBS traveler
already visited all k information vertices and thus found the
current network realization is

Pr(n, k, i;x = k) =

(
k

k

)(
n−k

i− k
)

(
n
i

) where k ≤ i ≤ n.

The expected number of steps the SBS traveler needs to take
to find all k information vertices is

n∑
i=k

iPr(n, k, i;x = k) =
n∑

i=k

i

(
n−k

i− k
)

(
n
i

) .

Normalizing the above expression,

∑n
i=k i

(
n−k

i−k

)
(

n

i

)

∑n
i=k

(
n−k

i−k

)
(

n

i

)
=

∑n
i=k i

i!
(i−k)!∑n

i=k
i!

(i−k)!

=
(n+ 1)k + n

2 + k
. (17)

Equation (17) indicates that the number of steps the SBS traveler
needs to take in order to find the current network realization is
proportional to the network size n.

Unlike the SBS traveler who can gather information about
only one new vertex in each step, the gossip traveler has addi-
tionally a probability to receive information about all the net-
work’s remaining unknown vertices. In his first step, the gossip
traveler receives information about ξTn vertices and in the Ith
step about ξT (1− ξT )In vertices. In each step, the gossip trav-
eler has information about all the vertices he learned about in
his previous steps. Therefore, in the ith step the gossip traveler

has information about g(i) vertices:

g(i) =
i−1∑
j=0

ξT (1− ξT )jn =
(
1− ξ̄T i

)
n

where ξ̄T = 1− ξT .
Obviously, when the traveler gathers information about all

n network vertices, he has information about all k information
vertices and knows the network current realization. Thus, an
upper bound on the expected number of steps the gossip traveler
needs to take is the number of steps needed to gather information
about all the network vertices. Since the number of vertices is
discrete, we are looking for the step number r such as

g(r + 1)− g(r) = n
(
ξ̄T

r − ξ̄T r+1
)
< 1.

Solving the above equation yields

r < − ln(nξT )
ln(1− ξT )

. (18)

In practice the gossip model r could be even smaller since
the gossip traveler gathers information by both gossiping and
visiting vertices; however, in the above analysis we took into
account only gossiping. Thus, (18), is an upper bound on the
expected number of steps the gossip traveler needs to take in
order to find the current network realization. Comparing (18) to
the expected number of steps the SBS traveler needs to take, (17),
we conclude that the outcome of gossiping is a higher learning
rate. While the SBS traveler needs on average to visit O(n)
vertices of the network to learn its state, the gossip traveler needs
to visit onlyO(log(n)) of them. In most cases, a higher learning
rate in stochastic networks will result in the shortest path to the
destination. Once the traveler knows the network edges’ states,
he can reduce his path cost, for example, by avoiding blocked
roads.

B. Characteristics of Traveling in Gossip Networks

In this section, we will discuss the characteristics of optimal
routing in gossip networks under the proposed GOSSIP DP
algorithm. For the simplicity of the discussion we use the fol-
lowing assumptions: The network is in the G-IWC model with
one stochastic edge. The stochastic edge can be either in the UP
or DOWN states. In the UP state the stochastic edge weight is
similar to the weight of the deterministic edges; in the DOWN
state its weight is higher than the weights of the deterministic
edges. The traveler must traverse the stochastic edge on his way
from source to destination. Once we analyze the parameters that
influence routing under these assumptions, expanding the model
to the case of several stochastic edges with several stochastic
states is straightforward as we demonstrate in the numerical
analysis in the next section.

A traveler in the gossip networks who is navigating using
our optimal routing policy can be viewed as operating in three
different regimes: “WIN,” “LOSE,” and “NEUTRAL.” In the
WIN regime, the traveler reduces his travel cost by gossiping. In
the NEUTRAL regime, obtaining information does not increase
or decrease the gossip traveler’s path cost. In the LOSE regime,
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TABLE II
NOTATION SUMMARY

obtaining information actually increases the traveler’s path cost.
The operating regime is a result of the following parameters:
the magnitude of the difference between the values of the actual
weight of the stochastic edges (ŵe) and their expected weights
(wSE), the values of the topology probability (ξT ), and the
magnitude of the difference between the values of the stochastic
edges’ actual states (ŵe) and the a priori probability to be in
the UP state (ξU ) (see Table II for notation summary). Next we
will explain the influence of each parameter.

The magnitude of the difference between the traveler’s a pri-
ori knowledge (wSE) and the actual weight of the stochastic
edges (ŵe), denoted by ∆ω = |wSE − ŵe|, determines the in-
fluence of obtaining information on the traveler’s path cost.
When ωSE and ŵe are similar, a gossip traveler will not have
an advantage over a nongossip traveler; they both know a pri-
ori the “correct” stochastic state. However, above some critical
difference, ∆ω > ∆C obtaining information will decrease the
traveler’s path cost. For example, when ωSE “tells” the travelers
that a stochastic edge is in the UP state and the actual state is
DOWN, a nongossip traveler may include this edge in his path
while a gossip traveler will reduce his path cost by bypassing
it in advance. The value of ∆C is determined by the difference
that will cause the nongossip traveler to take the wrong path,
meaning that he will bypass the stochastic edge when it is UP
or travel through it when it is DOWN.

Fig. 5 illustrates the different possible types of paths a traveler
can have for different ξT . When there is no gossiping (a), the
probability to receive information is zero; thus, the optimal
policy is determined a priori before the start of the journey and
has no recourse. In this case, the optimal policy is the one that
minimizes the expected weights. When ξT is maximal (b), the
traveler learns about the state of all the stochastic edges on the
traversal of the first edge (s, r), and then travels to the destination
t with full knowledge about ŵe and therefore without changing
his course. When ξT is in between (c), the traveler’s path is
composed of three phases. The initial phase is until the traveler

Fig. 5. The different possible paths a traveler can have for different topology
probabilities. (a) No gossiping, (b) maximal gossiping, and (c) in between.

obtains any information about the state of the stochastic edges.
Then, in the learning phase, the traveler may recalculate and
recourse his path according to the updated information vector,
and his optimal policy is a collection of different branches.
When the traveler has full information about ŵe at some vertex
u, he travels to the destination without changing his course. The
higher the ξT , the quicker the gossip traveler will learn about the
state of the network and therefore minimize the learning phase
in his travel, which leads to a decrease in the policy cost.

According to the optimal policy, stated in (9), one of the
parameters that determines the relative weight of each branch in
the path is the a priori probability of the network to be in a certain
stochastic state, denoted here by ξU . The closer ξU is to ξA
(small ∆ξ = |ξU − ξA|), the more efficient the learning phase
will be. Efficient learning means that the traveler is directed
toward the “right” direction by giving higher relative weight
to the right branch. When there is a relatively large difference
between ξU and ξA, the branches in the learning phase will
direct the traveler to the “wrong” direction and as a result the
cost of his policy will increase. For example, when the a priori
probability of the stochastic edge to be in the UP state is small
(ξU ≈ 0), the optimal policy will direct the gossip traveler to
branches that detour the stochastic edge. When the stochastic
edge is actually in the DOWN state, this decision is beneficial;
however, when the actual state of the stochastic edge is UP, the
decision will maximize the gossip traveler’s learning phase and
his total traveling cost.

The operating regime that the traveler experiences is deter-
mined by the combined values of the parameters ∆ω , ξT , and
∆ξ. Fig. 6 is a state diagram that illustrates the influence of the
parameters on the network regime. When ∆ω is below some
threshold ∆C , the a priori knowledge of the network state is
close enough to the true value, and thus increasing the path
length to obtain information can not benefit the gossip traveler.
As a result, in this case, the network can be in either the NEU-
TRAL or LOSE regimes. The LOSE regime is obtained when
the learning phase is relatively large (increase in ∆ξ); however,
a larger topology probability shortens the learning phase and
pushes the network into the NEUTRAL regime. The ultimate
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Fig. 6. The regime state diagram determines the influence of gossiping on
routing in different network characteristics.

network regime is determined by the relation between the two
parameters ξT and ∆ξ. Similarly, when ∆ω is above the thresh-
old ∆C , gossiping helps the gossip traveler to reduce his policy
costs. The network can be in either the WIN or NEUTRAL
regimes according to the relation between ξT and ∆ξ. In the
next section, we will demonstrate the above discussion using
simulation results.

V. NUMERICAL ANALYSIS

The main purpose of the simulations was to investigate the
influence of gossiping on the traveler’s optimal policy cost un-
der the different parameters used in the gossip networks. The
performance and behavior of the proposed algorithm on the
gossip networks are examined through numerical experiments
on various grid network configurations with randomly generated
weights under the G-IWC model. In each network configuration,
the simulation derived results comparing the traveler’s expected
optimal policy cost for different topology probabilities.

First, for each randomly generated network configuration
the optimal routing policy tables are calculated using the
GOSSIP DP algorithm. Then, using the calculated routing ta-
bles the simulation computes the expected optimal policy cost
from each vertex to the destination. For notation of the parame-
ters we use, see Table II.

A. Simulation Design

The simulation was conducted on fully connected grid net-
works representing, for example, the road structure in many
urban areas. Fig. 7 shows such a network for a 4× 4 grid. The
weights of the different deterministic edges were selected uni-
formly at random. Three specific edges in the grid were chosen
to be stochastic. The stochastic edges could be in two states,
with probability ξU in the UP state; then the edge weights are
randomly selected exactly like the deterministic edges. When
the stochastic edges are in the DOWN state, their weights are
set to different values as explained further below. The stochas-
tic edges were selected such that they will have a significant
influence on the optimal policy to the destination vertex t. For
the same reason, the weight of the deterministic edge that is

Fig. 7. A 4× 4 grid network used in the simulations. The dashed lines are
stochastic edges with probability ξU to be in the UP state. Larger grids had the
same structure.

adjacent to t was set to be higher than the other deterministic
edges.

The following list details the range of values we used in the
simulation:

1) Deterministic weight (ωD): Uniformly at random in [1,
100].

2) Stochastic DOWN weight (ωSD): In each configuration,
all stochastic edges had the same weight, which was se-
lected uniformly at random in [0, 800].

3) Topology probability (ξT ): In each configuration, the same
value of ξT was set to all the edges in the network. The
range of tested values was in [0, 1].

4) A priori probability (ξU ): Different values in the range [0,
1] were used to test the influence of ξU . In each configu-
ration, all stochastic edges were set to the same value.

5) Stochastic actual state (ξA): The actual state of all three
stochastic edges was set equally to either UP or DOWN.

6) Network structure (Grid Size): Two different grid net-
works were used with sizes of 4× 4 and 8× 8.

Totally, we tested 21(ξT ) · 9(ωSD) · 11(ξU ) · 2(ξA) = 4158
different configurations for each grid size.

In order to remove the influence of specific random network
weights, the same set of experiments were repeated with the
same network configuration for ten different random seeds. The
analyzed results are averaged over the ten different runs.

B. Performance Measurement

After the routing tables were built for a given network config-
uration, the expected cost (θE) from each vertex to the destina-
tion was calculated. θE is calculated by following all the possible
paths from source to destination assuming that the traveler starts
his travel with no information I = {X,X,X}. The paths were
weighted according to their probability to occur. The results are
presented using the value of relative expected cost (θR), where

θR(ξT ) =
θE(ξT )

θE(ξT = 0)
.

When θR = 1, gossiping does not change the gossip traveler’s
θE , and we are in the NEUTRAL regime. For θR < 1 obtain-
ing information leads to a decrease in θE—the WIN regime.
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Fig. 8. The influence of topology probability (ξT ) on path costs (θR) in
different a priori probabilities (ξU ). Simulation was done with grid size =
4 × 4, ξT = DOWN, ωSD = 700, ξU = 0, 0.7, and 0.9.

In the case of θR > 1, obtaining information leads to an in-
crease in θE , contradicting the desirable outcome—the LOSE
regime. We are interested more in the value of θR and less in
the value of θE since we are mainly interested in the influence
of obtaining information on the performance of a given network
configuration.

Some of our results are presented using the values of θA
which is the Average of θR over all the different measured
gossip probabilities for a given network configuration.

C. Results Discussion

The results presented in Fig. 8 demonstrate the role of ob-
taining information in different network configurations. In this
example, ξT = DOWN; thus, when ξU = 0, obtaining informa-
tion does not change the traveler’s optimal policy cost. When
∆ω = ∆ξ = 0, obtaining information will not help the gossip
traveler; both travelers are directed in the right direction and the
gossip traveler has a minimal learning phase. As a result, the
network operates in the NEUTRAL regime. When ξU = 0.7,
obtaining information increases the traveler’s optimal policy
cost, and the network is in the LOSE regime. In this case, ωSE is
such that the nongossip traveler bypasses the stochastic edges,
which is justified since ξA = DOWN. Therefore, the nongos-
sip traveler knows the right direction. Obtaining information
only puzzles the gossip traveler due to ∆ξ that implies that the
learning phase will be relatively large. As a result, the gossip
traveler will increase his optimal policy cost. An increase in the
ξT leads to a shorter learning phase, which leads to smaller θR.
When ξU = 0.9, the network is in the WIN regime. In this case,
∆ω > ∆C ; thus, the nongossip traveler roams in the wrong di-
rection. An increase in ξT leads to a reduction in θR since the
gossip traveler finishes his learning phase quicker. Fig. 8 also
illustrates that the magnitude of the WIN effect is substantially
larger than the LOSE effect.

Fig. 9 depicts the relation between ξU and θR for different
ξT values. The curves move between three regimes. When ξU is
below a threshold value, an increase in ξU does not change θR,
and the network is in the NEUTRAL regime. Then, an increase
in ξU leads to an increase of θR, and the network is in the

Fig. 9. The influence of a priori probability (ξU ) on path costs (θR) in
different gossip probabilities (ξT ). The different graphs are drawn for ξT =
0, 0.2, 0.4, 0.6, 0.8, and 1. Simulation was done with grid size = 4, ξT =
DOWN, and ωSD = 600.

Fig. 10. θA for different values of ωSD (X axis) and ξU (Y axis). White cells
represent the WIN regime, gray the NEUTRAL regime, and darker gray the
LOSE regime. This simulation was done with the following parameters: grid
size = 4; ξA = DOWN; θA was averaged over ξT = 0 to 1.

LOSE regime. A further increase of ξU moves the network into
the WIN regime. Comparing the graphs for different ξT reveals
that in the NEUTRAL regime the behavior of all the graphs is
almost identical. In the LOSE regime, the θR peak is reached
at ξT = 0.2. In the WIN regime, an increase in ξT leads to a
decrease in θR.

In this graph, the network is in the NEUTRAL regime when
ωSE and ŵe are similar and the difference between ξT and ξU
is small. In the LOSE regime, the increase in ∆ξ leads to a
longer learning phase and as a result an increase in θR. In the
WIN regime, the increase in ∆ξ increases the learning phase
while an increase in ξT decreases it; however, the nongossip
traveler moves toward the stochastic edge, which increases his
θE significantly compared to the θE of the gossip traveler. As a
result, taking both parameters into account, the relative optimal
policy cost of the gossip traveler θR is reduced.

Fig. 10 illustrates the relation between ξU and ωSD for aver-
aged ξT when the grid size is 4× 4. Here are several observations
from the results:

1) When ξU is zero, ωSE is equal to ωSD. In this case the trav-
eler knows a priori ŵe and there is no benefit in obtaining
information. The network is in the NEUTRAL regime.
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2) At a lower ωSD(0–200), an increase of ξU leads the net-
work into the WIN regime. In this case, the stochastic
edges weights are similar to the weights of the determin-
istic edges; therefore, information helps the gossip traveler
to find the optimal path in the network and decreases his
θA only moderately.

3) At higher a ωSD(300−), an increase of ξU leads the net-
work from the NEUTRAL to the LOSE and then to the
WIN regime. In the NEUTRAL and LOSE regimes, the
nongossip traveler bypasses the stochastic edges; there-
fore, in this case obtaining information does not help the
gossip traveler. When ξU > 0, obtaining information ac-
tually increases the learning phase due to relatively large
∆ξ and thus there is an increase in the θA. Then, with the
increase in ξU the nongossip traveler tries to travel through
the stochastic edges, which leads to an increase in his path
cost and a decrease in θA of the gossip traveler who by-
passes the stochastic edge. The move from the LOSE to
WIN regime is not due to the fact that the gossip traveler
decreases his path cost. He actually increases it. However,
the nongossip traveler increases his path cost even more
due to the fact that now he does not bypass the stochastic
edges.

4) At higher ωSD(300−), with the increase in ωSD there is
an increase in the size of the LOSE regime. The LOSE
regime ends when the nongossip traveler decides to travel
through the stochastic edges. This is happening when his
ωSE reaches ≈ 200, which is the cost of bypassing the
stochastic edges in this example.

5) At higher ωSD(300−), in the LOSE regime, the value of
θA increases with the increase in ξU and does not change
with the increase in ωSD. This phenomenon is due to the
parameter ∆ξ. At higher ξU there is a higher probability
to paths that lead to the wrong direction.

6) In the WIN regime, an increase in ωSD leads to a decrease
in θA. In higherωSD, the nongossip traveler travels through
the stochastic edges that have increased weights; therefore,
the gossip traveler can reduce his path cost to a larger
extent.

7) In the WIN regime, an increase in ξU leads to a decrease
in θA. The change here is more moderate and is the result
of two parameters. On the one hand, with the increase in
ξU the difference between ωSE and ŵe is increased, which
leads to an increase in the nongossip traveler’s path cost
and a decrease in θA. On the other hand, an increase of ξU
leads to an increase in the learning phase, which leads to
the opposite result of an increase in θA. The outcome of
the two parameters is a total decrease in θA.

Fig. 10 illustrates that for this network configuration gossip-
ing helps in more than half of the cases. In addition, the gain
from gossiping is far greater, as much as a 50% reduction of
the expected path cost, compared to the possible loss which is
only up to 7%. However, the fact that one can lose from try-
ing to obtain information dictates the need to understand gossip
networks’ behavior.

Fig. 11 illustrates that the LOSE regime is less significant in
larger grid sizes. The reason is that in a small grid the number

Fig. 11. θA for different values of ωSD (X axis) and ξU (Y axis). White
cells represent the WIN regime, gray the NEUTRAL regime, and darker gray
the LOSE regime. This simulation was done with the following parameters:
grid size = 8; ξA = DOWN; θA was averaged over ξT = 0 to 1.

of steps to the destination is small; therefore, even one wrong
step can lead to a significant increase in the path cost. In larger
networks, where the number of steps is relatively large, the influ-
ence of wrong moves is smaller. In real-life traffic applications,
the smaller grid size behavior is more likely due to the small
number of options the traveler has, especially when the network
is in the DOWN state, i.e., during congestion.

VI. CONCLUSION AND FUTURE WORK

This paper presents and studies a new model for information
gathering in stochastic networks—the gossip networks. Gossip-
ing could lead to some unusual phenomena, where the optimal
routing policy may direct travelers to make a detour in order to
gather information and minimize their expected path cost. The
optimal traveling policy in gossip networks is expressed by a
dynamic programming equation. Although the algorithm that
solves the equations, GOSSIP DP, is intractable in general, we
present two special scenarios where the optimal solution is poly-
nomial in respect to the network size. We analyze the relation
between the parameters that influence gossiping and produce a
state diagram that predicts the network regime. Gossip networks
can operate in three regimes. In each regime gossiping has a dif-
ferent effect on the traveler’s optimal path cost WIN (reduce),
NEUTRAL (does not change), and “LOSE” (increase). Numeri-
cal studies on gossip grid networks confirm the regime analysis.
The numerical studies illustrate that in the grid networks we
study, the WIN regime is larger that the LOSE regime, both
in size and in magnitude, and that the LOSE regime is more
common in small networks.

This research can be continued in several directions. First, one
can study optimal ad hoc communication exchange protocols,
best fitted to vehicles traveling at medium or high speeds. A sec-
ond direction is to examine optimal routing in gossip networks;
e.g., it is interesting to look at the effect of gossiping in different
network models, such as time dependent networks or models
that take into account the interactions between agents and the
macroscopic properties of the system. Another possible future
direction involves developing general approximation algorithms
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that overcome the curse of dimensionality while using the gossip
networks’ unique properties.

One of the dominant parameters of the GOSSIP DP algorithm
is the topology probability. Future work is needed to understand
the influence of traffic and communication factors on its value,
in particular the influence of parameters such as node density,
node velocity, and radio transmission range.
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