
Unveiling the Type of Relationship Between
Autonomous Systems Using Deep Learning

Tal Shapira
School of Electrical Engineering

Tel-Aviv University
talshapira1@mail.tau.ac.il

Yuval Shavitt
School of Electrical Engineering

Tel-Aviv University
shavitt@eng.tau.ac.il

Abstract—The ToR inference problem had been widely investi-
gated in the last two decades, mostly using heuristic algorithms.
In this problem, we attempt to reveal the economic relationships
between ASes, data with applications in network routing man-
agement and routing security.

In this paper, we introduce a novel approach for ToR classifi-
cation, which is based on embedding the AS numbers (ASN) in
high dimensional space using neural networks. Similar to natural
language processing (NLP) models, the embedding represents
latent characteristics of the ASN and its interactions on the
Internet. The embedding coordinates of each AS are represented
by a vector; thus, we call our method BGP2VEC. In order to
solve the supervised learning problem presented, we use these
vectors as an input to an artificial neural network and achieve
a state of the art accuracy of 95.2% for ToR classification.

Index Terms—Deep Learning, Internet, BGP, AS relationships,
AS embedding

I. INTRODUCTION

The Internet consists of thousands of Autonomous Systems
(ASes), each AS operated by an administrative domain such
as an Internet Service Provider (ISP), a business enterprise, or
a University. Each autonomous system is assigned a globally
unique number, the Autonomous System Number (ASN), and
advertises (announce) one or more IP address prefixes (APs)
using the Border Gateway Protocol (BGP). BGP routing’s
update messages list the entire AS path to reach an AP. For
each AP, BGP allows each AS to choose which routes to accept
(import policy), how to select the best route, and whether to
announce it (export policy).

The commercial agreements between two connected ASes
are broadly classified into three types of relationship (ToR)
[1]: 1) Provider-to-customer (P2C) - the customer AS pays
the provider AS for transit traffic from and to the rest of the
Internet, 2) Peer-to-peer (P2P) - two ASes freely exchange
traffic between themselves and their customers, but do not
exchange traffic from or to their providers or other peers,
and 3) Siblings (S2S) - two ASes that belong to the same
administrative domain. Gao [1] defined concatenation rules
for AS links in a route that model the way ASes usually
configure their BGP, it is called Valley Free (VF) since once a
route descend from a provider to a customer it cannot ascend
again. An interesting observation from the VF model is that
connectivity does not imply reachability, and the shortest path

in the (undirected) AS graph may not be usable due to the
BGP VF constraints.

ToR information allows us to infer the possible routes
selected by BGP, e.g., in case of a link failure [2]. It can also
be used to identify malicious fiddling with the routing system,
known as IP hijack attack [3], [4]. However, ToR information
is mostly not public, and thus there is a long line of research
to infer it [1], [5], [6], [7], [8]. Most of these solutions
are heuristic algorithms based on publicly available BGP
announcement databases [9], [10]. An inherent problem in
these algorithms is their use of heuristics, causing unbounded
errors that are spread over all inferred relationships.

Over the past few years, advances in deep learning [11]
have driven tremendous progress in many fields; one of them is
Natural Language Processing (NLP). We build on the excellent
results achieved for NLP tasks (Word2Vec [12]), were word
adjacency in sentences is used to map words to a large
dimensional space. Instead, we use adjacency of ASNs in
BGP announcements to embed ASes in a large (we selected
32) dimensional space and attach to each AS a vector of
its coordinates in this space. Based on the ASN embedding,
we apply artificial neural networks for the ToR classification
problems.

Our approach achieved excellent results: we classify AS
ToRs with an accuracy of 95.2%. As far as we know, we are
the first to solve this problem using deep learning methods.
We should also mention that the embedding also allows us to
classify ASNs, which is outside the scope of this paper.

The rest of the paper continues as follows. After describing
related work in Sec. II, we describe the datasets in Sec. III.
In Sec. IV we describe our two-stage method, which is based
on ASN embedding, i.e., BGP2VEC, and applying artificial
neural network for the classification task. Sec. V presents
our experiments and their results with comparison to previous
results. Finally, the last section concludes the paper.

II. RELATED WORK

There are many works that focused on solving the problem
of inferring Autonomous Systems (ASes) type of relationships
(ToR), most of them proposed heuristic algorithms based on
extracting information from BGP announcements or based on
generating AS level Routes from traceroutes. We will focus
here on works which are based on BGP route information, and978-1-7281-4973-8/20/$31.00 c© 2020 IEEE

NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on August 14,2020 at 17:16:03 UTC from IEEE Xplore. Restrictions apply.

disregard works that leveraged other information to improve
ToR inference, such as usage of BGP communities or IXP
route servers [13].

Gao [1] was the first to study the AS relationships inference
problem. She presented heuristic algorithms that infer AS
ToRs from BGP routing announcements based on the fact
that a provider’s AS graph degree is usually larger than its
customers, and that peers have about the same degree. The
algorithm locally identifies the top provider for each path
and classifies edges (ToRs) following the valley-free nature
of routing paths.

Subramanian et al. [5] introduced the ToR maximization
problem, which is to label all the edges in an undirected AS
graph, in order to maximize the number of valley-free paths in
a set of BGP routes. Their algorithm exploits the structure of
partial views of the AS graph, as seen from different locations.
For each location, it calculates the rank of each AS using
a reverse-pruning algorithm, and infer the ToR between two
ASes by comparing their vectors of ranks; if the ranks are
similar, the algorithm classifies the link as P2P, otherwise as
C2P.

Xia and Gao [14] used the BGP Community Attribute, the
AS-SET object, and the routing policies in the IRR Databases
to infer AS relationships. However, their approach only obtains
partial AS relationships (14% of total AS pairs on Oct. 2003).
They showed that both GAO [1] and SARK [5] inferred poorly
P2P relationships.

Battista et al. [15] proved that the ToR optimization prob-
lem [1], [5] is NP-complete, and reduced the problem to the
ToR-D problem that allows a small number of invalid paths.
They reduced the ToR-D problem to 2SAT and introduced
a heuristic algorithm for determining the ToRs. Cohen and
Raz [6] defined the Acyclic Type of Relationship (AToR)
problem that attempts both to minimize the number of invalid
paths and keep the directed graph acyclic. They introduced a
heuristic algorithm to solve the K-AToR problem.

Dimitropoulos et al. [7] used the IRR [10] to infer S2S
relationships and then introduced a more realistic problem
formulation that accepts that AS paths do not always exhibit a
hierarchical pattern to infer P2C and P2P relationships. Their
algorithm introduced a metric called reachability, sorted all
ASes by their reachability, and grouped ASes with the same
value into levels. They correctly inferred 96.5% C2P, 82.8%
P2P, and 90.3% S2S relationships.

Shavitt et al. [8] were motivated to reduce the usage of
heuristics. They proposed a near-deterministic algorithm for
solving the ToR inference problem (ND-ToR), that uses the
Internet’s core (a sub-graph of top-level ASes), which was
constructed in three different ways: the Greedy Max Clique
(GMC) core [16], the k-Core which is based on the k-
shell decomposition [17], and the CAIDA Peers Core (CP)
which is the largest connected component of a P2P graph
(provided by CAIDA [18])- that contains some of the largest
tier-1 ASes. They inferred the rest of the links using a three-
phase algorithm based on the valley-free rule, and the k-shell
index [17] of the adjacent ASes. Their algorithm succeeded to

infer over 95% of approximately 58,000 ToRs based on AS-
level paths collected from RouteViews [9] and DIMES [19].

Luckie et al. [20] introduced the AS-Rank algorithm for
inferring C2P and P2P links using BGP data. Their work
relies on three assumptions: 1) there is a clique of large transit
providers at the top of the hierarchy, 2) most customers enter
into a transit agreement to be globally reachable, and 3) cycles
of C2P links should not exist for routing to converge. Based
on these assumptions, they introduced a new algorithm for
inferring the customer cone of an AS, which is the set of
ASes that the AS can reach using P2C links, and achieved
state of the art results.

In order to overcome the inference barriers for hard cases,
such as non-valley-free routing, limited visibility, and non-
conventional peering practices, Jin et al. [21] identified key
interconnection features and developed a probabilistic algo-
rithm (ProbLink), and showed that their algorithm achieved
an error rate that is better than AS-Rank over their validation
set. However, they use additional information, such as sibling
relationships, BGP communities, and IXP information.

As mentioned in [14], [7], [8], [20], [22], the existing
heuristic algorithms rely on assumptions such as the presence
of valley-free paths, the existence of a peering clique of ASes
at the top of the hierarchy and more. This highly motivated
our work for introducing a deep learning based approach
that relies only on the characteristic of the data (BGP
routes). As far as we know, this is the first time deep learning
is used for this problem. As we will show, our deep learning
method produced significantly better results than previous rule-
based and heuristic algorithms.

Table I: Number of labeled ToRs in the dataset.

CAIDA AS ToRs serial-2
P2P P2C C2P

608,486 118,405 118,405

III. THE DATASETS

In our experiments, we use data that was collected in March
2018. We use two types of datasets:

1) RouteViews’s BGP announcements (RV) [9] - contains
BGP path announcements collected from 19 route col-
lectors. The dataset consists of approximately 3,600,000
BGP paths, 62,525 AS vertices, and approximately
113,400 undirected links. We use this unlabeled dataset
for the first stage of our approach (i.e., ASN embedding).

2) CAIDA AS Relationships Dataset [23] - provides two
datasets: serial-1, which contains 343,952 P2P pairs and
118,405 P2C/C2P pairs, that were inferred from BGP
paths using AS-Rank [20], and serial-2, which contains
additional 264,534 P2P pairs that were inferred from
BGP communities attributes using the method described
in [13]. The total number of samples is displayed in
Table I. We use this labeled dataset as labels for training
our neural network and various supervised learning algo-
rithms based on ASN embedding, and as a benchmark for

NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on August 14,2020 at 17:16:03 UTC from IEEE Xplore. Restrictions apply.

comparison with previous works. Note that the CAIDA
dataset does not contain siblings.

IV. METHOD

Our method works as follows: first, using a shallow neural
network, we map each ASN to an embedded vector. Then,
for the ToR classification task, we activate Artificial Neural
Network (ANN) that receives the vectors from the previous
stage. In this section, we will introduce in details both stages.

A. ASN Embedding

Applications of neural networks have expanded significantly
in recent years [11]. One of them is embeddings, a method that
is used to represent discrete variables as continuous vectors.
This technique is broadly used in the field of Natural Language
Processing (NLP), also known as word embeddings [12], [24],
which helps machine learning algorithms to achieve better
performance by grouping similar words. Embeddings are
important for input to a neural network, as it is trained to work
on vectors of real numbers. Moreover, the method produces
vectors such that similar words have close vectors, where
similarity is defined in terms of both syntax and semantics.

As mentioned in Sec. I, in the first stage, we produce a 32-
dimensional continuous vector representation for each ASN.
As in the training process of word embedding in NLP, i.e.,
Word2Vec [12], we train our network over a large corpus of
AS paths (described in Sec. III), which are equivalent to the
sentences in NLP tasks. We apply a similar skip-gram model
as introduced in [12], such that for each ASN in a certain AS-
path we predict ASNs within a certain range before and after
the current ASN, (as shown in Fig. 1). As a result, the model
learns to characterize an ASN by its context, i.e., neighboring
ASNs.

Our model contains an input layer of size 62,525 (the num-
ber of distinct ASes in our dataset, denoted by V), one fully
connected (FC) hidden layer whose size is the embedding size
N (using a grid search method, we found that an embedding
of size 32 achieves best results, see Sec. V-B), and an output
layer whose size is determined by the window size. The hidden
layer weight matrix is of a size VxN, such that each ASN in
the corpus corresponds to an N-features vector; these are the
ASN-vectors that are learned by the model. The output layer
is the softmax layer [25], whose size is V for each desired
output.

We choose to apply a window of size 2 (see Figure 1),
which is the maximum distance between the input ASN and
a predicted ASN (the output) within an AS path, which
results with an output layer with a maximum size equals
to 4x62,525. In order to improve the representation, we use
negative sampling [12], to distinguish the target ASN from
the noise distribution using 5 negative samples for each target
ASN. We build and run our network using the Gensim [26]
library.

The training procedure is done by feeding the network with
the ASN pairs; the input is a one-hot vector representing the
input ASN and the training outputs, which are also one-hot

vectors representing the output ASNs (the context ASNs).
Then applying gradient descent learning [27] (also known as
back-propagation) to adjust the weights of the network in order
to maximize the log probability of any context word given the
input word.

Table II: The architecture of our artificial neural network.

ToR Classification
Layer Type Input/Output Size

Embeddings: Input: 2, 1
Output: 2, 32

Conv1D: Output: 2, 32

MaxPool: Output: 2, 16

Conv1D: Output: 32, 16

MaxPool: Output: 16, 16

Fully Connected: Output: 100

Softmax: Output: 3

B. ANN Architecture

For the ToRs classification problem, we choose to use a
simple ANN (see Table II) comprised of seven layers, not
counting the input. A sequence of ASNs is fed into the first
layer of the network, which is an embedding layer. Each ASN
is embedded into a 32-dimensional vector based on the first
stage. The next layer is a 1-dimensional convolutional layer
[28] (labeled as ConV1D) followed by ReLU [29] activation
function with 32 filters of length 3 and a total number of 3,104
trainable parameters (3072 weights and 32 bias parameters).
The next layer is a max-pooling layer with 32 feature maps
of size 2, where each unit in each feature map outputs the
maximum value of 2 neurons in the corresponding feature
map in ConV1D. The next layer is a second ConV1 layer
(with 224 trainable parameters) followed by a second max-
pooling layer. The next layer is a fully-connected layer with
100 neurons and a ReLU activation function (with 25700
trainable parameters). Finally, our output layer is the softmax
layer with 3 outputs, one for each class. The last layer contains
303 trainable parameters.

The training of the neural network is done by optimizing
the categorical cross entropy [30] cost function, which is a
measure of the difference between the softmax layer output
and a one-hot encoding vector of the same size, representing
the correct label of the sample. For the optimization process,
we use the Adam [31] optimizer, which is an extension to
the stochastic gradient descent algorithm. We use the default
hyper-parameters as provided in Kingma et al. [31] and set
our batch size to 64.

We build and run our networks using the Keras [32] library
with Tensorflow [33] as its back-end. We use 80% of the
samples as a training set and 20% of the samples as a test set.
We split each dataset such that the ratio between the quantities
of the classes remains the same in both the training set and
the test set, while there is no ToR in the training set in which
its inverse appears in the test set. We run our network for 40

NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on August 14,2020 at 17:16:03 UTC from IEEE Xplore. Restrictions apply.

Figure 1: An example for generating input/output ASNs for the training process of BGP2VEC using a window size of 2.

epochs of the training set. During the test time, our network
classifies a ToR in an average time of 0.1 milliseconds.

V. EXPERIMENTS AND RESULTS

In this section, we report our experimental results by a
comparison of our ToR classification to best known previous
results. Moreover, we will show that our method had found
many mistakes in the CAIDA dataset, which emphasizes the
strength of our results.

Due to a lack of space, we omit experimental results that
demonstrate the strength of the ASN embedding. We can attest
that the ASN embedding captures many latent characteristics
of the ASNs. For example, the closest ASN to AS3356 is its
sibling AS3549, and the next 3 nearest neighbors are other tier-
1 providers: Telia, Verizon, and KPN. All the 5 nearest neigh-
bors of IUCC (The Israeli universities’ network, AS378) with
high cosine similarity scores are also Educational/Research
ASes from Europe and the Middle East with a small degree.
None of these ASes are connected directly.

Table III: A comparison of the ToR classification accuracy and
recalls.

Algorithm Accuracy P2P Rc. C2P Rc. P2C Rc.
CAIDA AS Relationships Dataset (serial-1)

GAO 38.4% 1.0% 99.1% 85.7%
SARK 81.9% 16.1% 95.4% 95.2%
NDToR CP-CORE 89.0% 99.9% 70.8% 71.2%
NDToR TS-CORE 56.2% 54.7% 33.3% 82.3%
NDToR Kmax-CORE 84.6% 12.3% 99.5% 99.4%
RUAN 78.6% 2.3% 97.8% 97.7%
BGP2VEC - NN 94.2% 89.0% 93.1% 98.5%
BGP2VEC - LR 81.6% 93.7% 51.1% 49.0%
BGP2VEC - SVM 76.5% 89.1% 58.6% 57.7%
BGP2VEC - KNN 92.6% 94.0% 90.0% 90.1%
BGP2VEC - D-KNN 92.1% 94.0% 89.6% 89.%
BGP2VEC - KMeans 61.6% 79.8% 26.6% 43.6%

CAIDA AS Relationships Dataset (serial-2)
BGP2VEC - NN 95.2% 98.0% 88.4% 87.6%

A. Evaluation Criteria
We use the accuracy criteria to evaluate our model per-

formance, which is defined as the proportion of examples for
which the model produces the correct output of all predictions
made. A formal definition of the accuracy for multiclass
classification is

Accuracy =

∑
i∈classes TPi∑

i∈classes(TPi + FPi)
,

where TPi and FPi are the true positive and the false positive
of the class i, respectively. Moreover, for each class we also
calcultae the the recall, defined by Rc = TP

TP+FN (where FN
is the false negative).

B. Hyper-parameters Optimization

Figure 2 shows the results of a grid search over different
ASN embedding sizes (V) and window sizes, in order to
optimize these parameters to achieve the best accuracy for
ToRs classification. We performed a grid search for window
sizes of 1, 2, and 3; and for embedding sizes in powers of 2
ranging from 2 to 512. In each experiment, we used the same
architecture as depicted in Sec. IV, with only one modification,
which is the output of the embedding layer.

The results show that embedding sizes greater than 8
and different window sizes give similar results for the ToRs
classification problem. Since increasing the embedding size
increases dramatically the number of parameters in the neural
network, we select an embedding size of 32 and a window of
2.

Figure 2: Grid search results for the ToRs classification’s
accuracy as a function of the embedding size (V) and the
window size of the BGP2Vec.

C. ToR Classification Results

Table III compares BGP2VEC results to other previously
suggested algorithms based on our CAIDA AS Relationship
serial-1 dataset, which contains AS relationships inferred from
BGP using the method described in [20]. In our comparison,
we focused only on methods that are based on AS-level paths,
thus do not include the PTE [14] algorithm. Shavitt et al. [8]
observed a problem when executing the heuristic phases for
inferring P2P (and S2S) relationships of the AToR [6] and
BPP [15] algorithms. Thus, we compare only the P2C and C2P
assignments of both algorithms. In our experiments, the AToR
algorithms succeeded to accurately infer 93.7% and 98.1% of
the C2P ToRs and P2C ToRs, respectively, while BPP infer
only 83.7% and 68.2% of these ToRs.

NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on August 14,2020 at 17:16:03 UTC from IEEE Xplore. Restrictions apply.

We implemented the following algorithms for the compari-
son: 1) the first ToR inference algorithm which was proposed
by Gao [1] (referred to as GAO), 2) the SARK algorithm that
was presented by Subramanian et al. [5], 3) the near determin-
istic AS ToRs inference algorithm [8] (i.e., ND-ToR) using
three different cores; CP-Core and kmax-Core as described in
Sec II, and a new core that is based on the training set (referred
as TS-Core), which contains approximately 90,000 randomly
chosen labeled ToRs (which are 80% of our ToR dataset), and
4) the most recent algorithm (RUAN) that was introduced by
Ruan and Susan Varghese [22]. We implement this algorithm
based on 19 Tier-1 ASes according to the clique at the top of
the hierarchy of the CAIDA relationships dataset [23].

The presented algorithms can not take advantage of the
labeled training set without a significant change. Even when
we tried to take advantage of the training set and constructed a
new core for the ND-ToR (NDToR TS-CORE), which consists
of the training set edges with their labeled ToRs, the method
achieves poor results, relative to the other cores.

A comparison of the ToR classification results is presented
in Table III. Our method achieves the best performance, with
an accuracy of 95.8%, 5.2% higher than the second-best
algorithm (NDToR CP-Core).

In the second part of Table III, we show our BGP2VEC
algorithm results over the CAIDA AS Relationships serial-
2 dataset, which adds about 300k links inferred from BGP
communities using the method described in [13]. Despite
the imbalanced dataset, our method succeeds in achieving
even better results compared to the serial-1 dataset with an
accuracy of 95.2%. Previous works, which were described
before, achieved similar results for both datasets.

We manually explored some misclassified test results. For
the 30 misclassified ToRs with the highest softmax scores (all
above 0.999), 12 were correct (i.e., incorrect labels in the
dataset), 12 were indeed misclassifications, 3 were siblings,
and 3 were unclear. Namely, of the classifiable ToRs, half of
our mistakes were actually correct.

For example, the ToR [AS5009, AS6939] is labeled by
CAIDA as P2P, while our network predicts it correctly as
C2P. By examining AS5009 routing, one can easily infer
that AS 6939 is its main transit provider since almost all
of AS5009 traffic is traversing through AS6936 (Hurricane
Electric). Since March 2018, CAIDA corrected this ToR.
Another example is the ToR [AS52614, AS267221], which
is labeled by CAIDA as P2C, while our network predicts it
correctly as C2P. According to AS52614’s IRR AS267221 is
its provider, which is also clear by the fact that many of its
route traverses AS267221. We could not find any route from
AS267221 that traverse AS52614.

Finally, we examined 25 ToRs that do not exist in our
dataset. Typically, these are ASes from the edges of the
Internet, where our database probably has many missing ToRs
or misclassified ToRs (ASes from Brazil and Nepal together
comprised of 38% of the ToR’s endpoint). For this challenging
group, we got 18 correct classifications (most with softmax
scores above 0.95), 4 errors (only 1 with high softmax score),

and 3 siblings.
Overall, when the softmax score is sufficiently high, our

classification seems to work very well. The threshold seems
to be in the range [0.85, 0.9], but it requires more manual data
tagging to pin the exact threshold.

An interesting finding in our small manual experiments is
the large percentage of sibling ToRs. This may hints that many
of our misclassifications are attributed to siblings.

D. Testing BGP2VEC Embedding Performances Using Differ-
ent Machine Learning Algorithms

In order to emphasize the strength of the BGP2VEC
embedding, we apply ‘classic’ supervised and unsupervised
machine learning algorithms for the ToRs classification prob-
lem. Table III summarizes our results using a 64-dimensions
embedding-vector for each Tor, by concatenating together two
64-dimensions embedding-vectors, one for each AS.

We tested two basic supervised learning algorithms, Logistic
Regression (denoted as LR) and Support Vector Machine
(SVM), which achieve accuracies of 81.6% and 76.5%, respec-
tively. As can be seen in Table III, both methods struggle to
classify C2P/P2C ToRs, which is mainly due to the imbalanced
dataset (for example, by applying weighted loss to balance the
imbalances in the data, we achieve similar recalls for both P2P,
C2P, and P2c ToRs).

In order to understand the strength of the AS-pairs sim-
ilarity, for each AS-pair we generate a distance-embedding,
i.e., we subtract the embedding of the second AS from the
embedding of the first AS and get a 32-dimensions distance-
vector. Then we apply the K-Nearest Neighbours (KNN)
algorithm over the distance-vectors (denoted as D-KNN in
Table III), which choose the ToR which achieves a majority
vote among the 5 nearest neighbors. The D-KNN achieves an
accuracy of 92.1%, which is the best accuracy achieved over
the symmetric dataset. We also apply a KNN algorithm using
the concatenated 64-vectors and achieve an accuracy of 92.6%.
Figure 3 displays the number of neighbors with the same ToR,
based on the KNN algorithm with K=5 over the symmetric test
set for; P2P, C2P, P2C and combined. As can be seen, 83.0%
of the 5-neighbors ToRs are identical, which means that the
distance-vectors that achieved by the BGP2VEC embedding
characterize well the ToRs.

Last, we apply the K-Means unsupervised-learning algo-
rithm. Then we determine the class of each cluster by applying
a majority vote. We achieve a best accuracy of 61.6% with
K=10. This result shows that although similar ToRs are located
close to each other (as can be concluded by the KNN results),
they are not spatially arranged in clusters.

In summary, our deep learning method achieves state of
the art results in a relatively short evaluation time for ToRs
classification. Moreover, we show that ToRs can be inferred
using simple machine learning algorithms based on BGP2VEC
embeddings.

VI. CONCLUDING REMARKS

In this paper, we introduce a novel approach for numerical
characterization of ASes using deep learning methods and

NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on August 14,2020 at 17:16:03 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Number of neighbours with the same ToR based on
KNN with K=5 over the symmetric test set for; P2P, C2P, P2C
and combined.

apply it to achieve state of the art results for AS Type of
Relationships (ToRs) classification. Our solution consists of
two stages: learning dense representations of ASNs from
BGP routes (BGP2VEC), and applying ANN using the ASN
embeddings as inputs for the classification. As far as we know,
we are the first to employs deep learning for this problem.

We had tested our algorithm on the CAIDA AS Relation-
ship dataset and found it to perform very well, with 95.2%
accuracy. Manual inspection showed that of the 4.8% of the
misclassifications, almost half were correct and are due to
errors in the CAIDA dataset. By comparing our method with
previous works, our method achieves the best performance,
5.2% higher than the second-best algorithm. Moreover, our
method found mistakes in the labeled dataset, which demon-
strates the strength of our results.

This work is the first in this direction, and we plan to use
it as a building block for other problems, such as detecting
hijacked routes from BGP announcements. We also plan to
explore the ASN embeddings further to reveal the latent
characteristics of ASes.

ACKNOWLEDGMENT

This research was funded in part by a grant on cyber
research from the Israeli PMO, and by the Blavatnik Inter-
disciplinary Cyber Research Center at Tel Aviv University.

REFERENCES

[1] L. Gao, “On inferring autonomous system relationships in the internet,”
IEEE/ACM Transactions on Networking, vol. 9, no. 6, pp. 733–745, Dec
2001.

[2] D. Dolev, S. Jamin, O. Mokryn, and Y. Shavitt, “Internet resiliency to
attacks and failures under BGP policy routing,” Computer Networks,
vol. 50, Nov. 2006.

[3] C. C. Demchak and Y. Shavitt, “China’s maxim - leave no access
point unexploited: The hidden story of china telecom’s BGP hijacking,”
Military Cyber Affairs, vol. 3, Oct. 2018.

[4] P. Sermpezis, V. Kotronis, A. Dainotti, and X. Dimitropoulos, “A survey
among network operators on BGP prefix hijacking,” ACM SIGCOMM
Computer Communication Review (CCR), vol. 48, no. 1, pp. 64–69, Jan
2018.

[5] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz, “Characterizing
the internet hierarchy from multiple vantage points,” in INFOCOM’02,
vol. 2, June 2002, pp. 618–627 vol.2.

[6] R. Cohen and D. Raz, “Acyclic type of relationships between au-
tonomous systems,” in IEEE INFOCOM 2007, 2007, pp. 1334–1342.

[7] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker, Y. Hyun,
k. claffy, and G. Riley, “AS relationships: Inference and validation,”
SIGCOMM Comput. Commun. Rev., vol. 37, no. 1, pp. 29–40, Jan. 2007.

[8] U. Weinsberg, Y. Shavitt, and E. Shir, “Near-deterministic inference of
AS relationships,” in ConTel 2009, Zagreb, Croatia, Jun. 2009.

[9] U. of Oregon Advanced Network Technology Center, “Route views
project,” http://www.routeviews.org/, 2018.

[10] I. R. Registry, http://www.irr.net/, 2018.
[11] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, pp. 436–444, 2015.
[12] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed representations of words and phrases and their composi-
tionality,” in Advances in neural information processing systems, 2013,
pp. 3111–3119.

[13] V. Giotsas, S. Zhou, M. Luckie et al., “Inferring multilateral peering,”
in The ninth ACM conference on Emerging networking experiments and
technologies, 2013, pp. 247–258.

[14] J. Xia and L. Gao, “On the evaluation of AS relationship inferences,”
in IEEE GLOBECOM’04, vol. 3, Nov. 2004.

[15] G. D. Battista, M. Patrignani, and M. Pizzonia, “Computing the types
of the relationships between autonomous systems,” in IEEE INFOCOM
2003., vol. 1, March 2003, pp. 156–165.

[16] S. L. Tauro, C. Palmer, G. Siganos, and M. Faloutsos, “A simple con-
ceptual model for the internet topology,” in Global Telecommunications
Conference (GLOBECOM’01), vol. 3. IEEE, 2001, pp. 1667–1671.

[17] S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, and E. Shir, “A model
of internet topology using k-shell decomposition,” Proceedings of the
National Academy of Sciences (PNAS), vol. 104, no. 27, pp. 11 150–
11 154, 2007.

[18] C. Rank, http://as-rank.caida.org/, 07 2018.
[19] Y. Shavitt and E. Shir, “DIMES: Let the internet measure itself,”

SIGCOMM Comput. Commun. Rev., vol. 35, no. 5, pp. 71–74, Oct.
2005.

[20] M. Luckie, B. Huffaker, A. Dhamdhere, V. Giotsas et al., “AS re-
lationships, customer cones, and validation,” in Internet Measurement
Conference. ACM, 2013, pp. 243–256.

[21] Y. Jin, C. Scott, A. Dhamdhere, V. Giotsas, A. Krishnamurthy, and
S. Shenker, “Stable and practical AS relationship inference with Prob-
Link,” in 16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), Boston, MA, USA, Feb. 2019, pp. 581–598.

[22] L. Ruan and J. Susan Varghese, “Computing observed autonomous sys-
tem relationships in the internet,” Computer Science Technical Reports,
no. 367, 2014.

[23] T. C. R. Dataset, http://www.caida.org/data/active/as-relationships/,
2018.

[24] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” CoRR, vol. abs/1301.3781,
2013. [Online]. Available: http://arxiv.org/abs/1301.3781

[25] Y. T. Zhou, R. Chellappa, A. Vaid, and B. K. Jenkins, “Image restoration
using a neural network,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 36, no. 7, pp. 1141–1151, Jul 1988.

[26] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in the LREC 2010 Workshop on New Challenges
for NLP Frameworks, Valletta, Malta, May 2010, pp. 45–50.

[27] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, Nov. 1998.

[28] Y. L. Cun, O. Matan, B. Boser, J. S. Denker, D. Henderson, R. E.
Howard, W. Hubbard, L. D. Jacket, and H. S. Baird, “Handwritten
zip code recognition with multilayer networks,” in 10th International
Conference on Pattern Recognition, vol. 2, Jun. 1990, pp. 35–40.

[29] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International Confer-
ence on International Conference on Machine Learning, ser. ICML’10.
USA: Omnipress, 2010, pp. 807–814.

[30] D. Campbell, R. A. Dunne, and N. A. Campbell, “On the pairing
of the softmax activation and cross–entropy penalty functions and
the derivation of the softmax activation function,” in 8th Australian
Conference on Neural Networks, Melbourne, Australia, 1997, pp. 181–
185.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.

[32] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[33] M. A. et al., “Tensorflow,” https://www.tensorflow.org/, 2015.

NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on August 14,2020 at 17:16:03 UTC from IEEE Xplore. Restrictions apply.

