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Abstract. Replicated services accessed via quorums enable each access to be performed at
only a subset (quorum) of the servers and achieve consistency across accesses by requiring any two
quorums to intersect. Recently, b-masking quorum systems, whose intersections contain at least
2b+1 servers, have been proposed to construct replicated services tolerant of b-arbitrary (Byzantine)
server failures. In this paper we consider a hybrid fault model allowing benign failures in addition
to the Byzantine ones. We present four novel constructions for b-masking quorum systems in this
model, each of which has optimal load (the probability of access of the busiest server) or optimal
availability (probability of some quorum surviving failures). To show optimality we also prove lower
bounds on the load and availability of any b-masking quorum system in this model.
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1. Introduction. Quorum systems are well-known tools for increasing the effi-
ciency of replicated services, as well as their availability when servers may fail benignly.
A quorum system is a set of subsets (quorums) of servers, every pair of which intersect.
Quorum systems enable each client operation to be performed only at a quorum of
the servers, while the intersection property makes it possible to preserve consistency
among operations at the service.

Quorum systems work well for environments where servers may fail benignly.
However, when servers may suffer arbitrary (Byzantine) failures, the intersection
property does not suffice for maintaining consistency; two quorums may intersect
in a subset containing faulty servers only, which may deviate arbitrarily and unde-
tectably from their assigned protocol. Malkhi and Reiter thus introduced masking
quorums systems [25], in which each pair of quorums intersects in sufficiently many
servers to mask out the behavior of faulty servers. More precisely, a b-masking quorum
system is one in which any two quorums intersect in 2b+ 1 servers, which suffices to
ensure consistency in the system if at most b servers suffer Byzantine failures.

In this paper we develop four new constructions for b-masking quorum systems.
For the first time in this context, we distinguish between masking Byzantine faults
and surviving a possibly larger number of benign faults. Our systems remain available
in the face of any f crashes, where f may be significantly larger than b (such a system
is called f -resilient). In addition, our constructions demonstrate optimality (ignoring
constants) in two widely accepted measures of quorum systems, namely load and
crash probability. The load (L), a measure of best-case performance of the quorum
system, is the probability with which the busiest server is accessed under the best
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possible strategy for accessing quorums. The crash probability (Fp) is the probability,
assuming that each server crashes with independent probability p, that all quorums
in the system will contain at least one crashed server (and thus will be unavailable).
The crash probability is an even more refined measure of availability than f , as a good
system will tolerate many failure configurations with more than f crashes. Three of
our systems are the first systems to demonstrate optimal load for b-masking quorum
systems, and two of our systems each demonstrate optimal crash probability for its
resilience f . In proving optimality of our constructions, we prove new lower bounds
for the load and crash probability of masking quorum systems.

The techniques for achieving our constructions are of interest in themselves. Two
of the constructions are achieved using a boosting technique, which can transform any
regular (i.e., benign fault-tolerant) quorum system into a masking quorum system
of an appropriately larger system. Thus, it makes all known quorum constructions
available for Byzantine environments (of appropriate sizes). In the analysis of one of
our best systems we employ strong results from percolation theory.

The rest of this paper is structured as follows. We review related work and
preliminary definitions in sections 2 and 3, respectively. In section 4 we prove bounds
on the load and crash probability for b-masking quorum systems and introduce quorum
composition. In sections 5–7 we describe our new constructions. We discuss our results
in section 8.

2. Related work. Our work borrows from extensive prior work in benignly
fault-tolerant quorum systems (e.g., [12, 39, 24, 11, 15, 4, 9, 1, 7, 31, 36]). The notion
of availability we use here (crash probability) is well known in reliability theory [5]
and has been applied extensively in the analysis of quorum systems (cf. [4, 34, 35] and
the references therein). The load of a quorum system was first defined and analyzed
in [31], which proved a lower bound of Ω( 1√

n
) on the load of any quorum system (and,

a fortiori, any masking quorum system) over n servers. In proving load-optimality of

our constructions, we generalize this lower bound to Ω(
√

b
n ) for b-masking quorum

systems.
Grids, which form the basis for our multigrid (denoted M-Grid) construction,

were proposed in [24, 7, 21, 25]. The technique of quorum composition, which we
use in our recursive threshold (RT) and boosted finite projective planes (boostFPP)
constructions, has been studied in [29, 33, 32] under various names such as “coterie
join” and “recursive majority.” Our multipath (M-Path) construction generalizes the
system of [41], coupled with the analysis of the Paths construction of [31], and the
recent system of [6].

Several constructions of masking quorum systems were given in [25] for a variety
of failure models. For the model we consider here—i.e., any b servers may experience
Byzantine failures—that work gave two constructions. We compare those construc-
tions to ours in section 8.

Hybrid failure models have been considered in other works (e.g., [10, 22, 23, 38]).

3. Preliminaries. In this section we introduce notation and definitions used
in the remainder of the paper. Much of the notation introduced in this section is
summarized in Table 1 for quick reference.

We assume a universe U of servers, |U | = n, over which our quorum systems
will be constructed. Servers that obey their specifications are correct. A faulty server,
however, may deviate from its specification arbitrarily. We assume that up to b servers
may fail arbitrarily and that 4b < n, since this is necessary for a b-masking quorum



THE LOAD AND AVAILABILITY OF BYZANTINE QUORUM SYSTEMS 1891

Table 1
The notation used in this paper.

b Maximum number of Byzantine server failures.
c(Q) Size of the smallest quorum in Q.
f Resilience (Definition 3.4).

Fp(Q) Crash probability (Definition 3.10).
IS(Q) Size of smallest intersection between any two quorums in Q.
L(Q) Load of Q (Definition 3.8).

MT (Q) Size of a smallest transversal of Q (Definition 3.3).
n Number of servers (i.e., |U | = n).
p Independent probability that each server crashes.
Q A quorum system (Definition 3.1).
U Universe of servers.

system to exist [25]. Beginning in section 3.2.2, we will also distinguish benign (crash)
failures as a particular failure of interest, and in general there may be more than b
such failures.

3.1. Quorum systems.
Definition 3.1. A quorum system Q ⊆ 2U is a collection of subsets of U , each

pair of which intersect. Each Q ∈ Q is called a quorum.
We use the following notation. The cardinality of the smallest quorum in Q is

denoted by c(Q) = min{|Q| : Q ∈ Q}. The size of the smallest intersection between
any two quorums is denoted by IS(Q) = min{|Q ∩ R| : Q,R ∈ Q}. The degree of
an element i ∈ U in a quorum system Q is the number of quorums that contain i:
deg(i) = |{Q ∈ Q : i ∈ Q}|.

Definition 3.2. A quorum system Q is (s, d)-fair if |Q| = s for all Q ∈ Q and
deg(i) = d for all i ∈ U . Q is called fair if it is (s, d)-fair for some s and d.

Definition 3.3. A set T is a transversal of a quorum system Q if T ∩ Q �= ∅

for every Q ∈ Q. The cardinality of the smallest transversal is denoted by MT (Q) =
min{|T | : T is a transversal of Q}.

Regular quorum systems, with IS(Q) = 1, are insufficient to guarantee consis-
tency in case of Byzantine failures. Malkhi and Reiter [25] defined several varieties of
quorum systems for Byzantine environments, which are suitable for different types of
services. In this paper we focus on masking quorum systems.

Definition 3.4 (see [25]). The resilience f of a quorum system Q is the largest
k such that for every set K ⊆ U , |K| = k, there exists Q ∈ Q such that K ∩Q = ∅.

Remark. The resilience of any quorum system Q is f =MT (Q)− 1.
Definition 3.5 (see [25]). A quorum system Q is a b-masking quorum system

if it is resilient to f ≥ b failures, and obeys the following consistency requirement:

∀Q1, Q2 ∈ Q : |Q1 ∩Q2| ≥ 2b+ 1.(3.1)

Remark. Informally, if we view the service as a shared variable which is updated
and read by the clients, then the resilience requirement of Definition 3.4 ensures that
no set of b ≤ f faulty servers will be able to block update operations (e.g., by causing
every update transaction to abort). The consistency requirement of Definition 3.5
ensures that read operations can mask out any faulty behavior of up to b servers. Ex-
amples of protocols implementing various data abstractions using b-masking quorum
systems can be found in [25, 26, 27].

Lemma 3.6. Let Q be a quorum system. Then Q is b-masking if both the following
conditions hold:
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(1) MT (Q) ≥ b+ 1;
(2) IS(Q) ≥ 2b+ 1.
Proof. Assume that MT (Q) ≥ b + 1. To see that Q is resilient to b failures,

note that if there exists some K such that K ∩ Q �= ∅ for all Q ∈ Q, then K is a
transversal. By the minimality we have |K| ≥ b + 1, and we are done. Condition 2
immediately implies (3.1).

Corollary 3.7. Let Q be a quorum system, and let b = min{MT (Q) −
1,IS(Q)−1

2 }. Then Q is b-masking.

3.2. Measures. The goal of using quorum systems is to increase the availability
of replicated services and decrease their access costs. A natural question is how
well any particular quorum system achieves these goals, and moreover, how well it
compares with other quorum systems. Several measures will be of interest to us.

3.2.1. Load. A measure of the inherent performance of a quorum system is its
load. Naor and Wool define the load of a quorum system as the frequency of accessing
the busiest server using the best possible strategy [31]. More precisely, given a quorum
system Q, an access strategy w is a probability distribution on the elements of Q; i.e.,∑
Q∈Q w(Q) = 1. The value w(Q) ≥ 0 is the frequency of choosing quorum Q when

the service is accessed. The load is then defined as follows.

Definition 3.8. Let a strategy w be given for a quorum system Q={Q1, . . . , Qm}
over a universe U . For an element u ∈ U , the load induced by w on u is lw(u) =∑
Qi	u w(Qi). The load induced by a strategy w on a quorum system Q is Lw(Q) =

maxu∈U{lw(u)}. The system load on a quorum system Q is L(Q) = minw{Lw(Q)},
where the minimum is taken over all strategies.

We reiterate that the load is a best-case definition. The load of the quorum
system will be achieved only if an optimal access strategy is used and only in the case
that no failures occur. A strength of this definition is that the load is a property of a
quorum system and not of the protocol using it. Examples of load calculations can be
found in [40]. As an aside, we note that not every quorum system can have a strategy
that induces the same load on each server. In [16] it is shown that for some quorum
systems it is impossible to balance the load perfectly.

Recall that c(Q) denotes the cardinality of the smallest quorum in Q. The next
result will be useful to us in what follows (recall Definition 3.2).

Proposition 3.9 (see [31]). Let Q be a fair quorum system. Then L(Q) =
c(Q)/n.

3.2.2. Availability. By definition a b-masking quorum system can mask up to b
arbitrary (Byzantine) failures. However, such a system may be resilient to more benign
failures. By benign failures we mean any failures that render a server unresponsive,
which we refer to as crashes to distinguish them from Byzantine failures.

The resilience f of a quorum system provides one measure of how many crash
failures a quorum system is guaranteed to survive, and indeed this measure has been
used in the past to differentiate among quorum systems [3]. However, it is possible
that an f -resilient quorum system, though vulnerable to a few failure configurations
of f + 1 failures, can survive many configurations of more than f failures. One way
to measure this property of a quorum system is to assume that each server crashes
independently with probability p and then to determine the probability Fp that some
quorum survives with no faulty members. This is known as crash probability and is
formally defined as follows.
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Definition 3.10. Assume that each server in the system crashes independently
with probability p. For every quorum Q ∈ Q let EQ be the event that Q is hit, i.e., at
least one element i ∈ Q has crashed. Let crash(Q) be the event that all the quorums
Q ∈ Q were hit, i.e., crash(Q) = ∧

Q∈Q EQ. Then the system crash probability is
Fp(Q) = P(crash(Q)).

We would like Fp to be as small as possible. A desirable asymptotic behavior of
Fp is that Fp → 0 when n → ∞ for all p < 1/2, and such an Fp is called Condorcet
(after the Condorcet jury theorem [8]).

4. Building blocks. In this section, we prove several theorems which will be our
basic tools in what follows. First we prove lower bounds on the load and availability
of b-masking quorum systems, against which we measure all our new constructions.
Then we prove the properties of a quorum composition technique, which we later use
extensively.

4.1. The load and availability of masking quorum systems. We begin by
establishing a lower bound on the load of b-masking quorum systems, thus tightening
the lower bound on general quorum systems [31] as presented in [25].

Theorem 4.1. Let Q be a b-masking quorum system. Then L(Q) ≥ max{ 2b+1
c(Q) ,

c(Q)
n }.

Proof. Let w be any strategy for the quorum system Q, and fix Q1 ∈ Q such that
|Q1| = c(Q). Summing the loads induced by w on all the elements of Q1, and using
the fact that any two quorums have at least 2b+ 1 elements in common, we obtain∑

u∈Q1

lw(u) =
∑
u∈Q1

∑
Qi	u

w(Qi) =
∑
Qi

∑
u∈(Q1∩Qi)

w(Qi)

≥
∑
Qi

(2b+ 1)w(Qi) = 2b+ 1.

Therefore, there exists some element in Q1 that suffers a load of at least
2b+1
|Q1| .

Similarly, summing the total load induced by w on all of the elements of the
universe, and using the minimality of c(Q), we get∑

u∈U
lw(u) =

∑
u∈U

∑
Qi	u

w(Qi) =
∑
Qi

|Qi|w(Qi)

≥
∑
Qi

c(Q)w(Qi) = c(Q).

Therefore, there exists some element in U that suffers a load of at least c(Q)
n .

Corollary 4.2. Let Q be a b-masking quorum system. Then L(Q) ≥
√

2b+1
n ,

and equality holds if c(Q) =√
(2b+ 1)n.1

Remark. Corollary 4.2 shows that the threshold construction of [25] in fact has
optimal load when b = Ω(n). E.g., when b ≈ n/4 the obtained load is ≈ 0.75, but
for such systems we can only hope for a constant load of ≈ 1/

√
2 = 0.707. However,

the load of the threshold construction is always ≥ 1/2, which is far from optimal for
smaller values of b.

On the other hand, the grid-based construction of [25] does not have optimal
load. It has quorums of size O(b

√
n) and load of roughly 2b/

√
n. In what follows we

1To avoid repetitive notation, we omit floor and ceiling brackets from expressions for integral
quantities.
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show systems which significantly improve this: some of our new constructions have
quorums of size O(

√
bn) and optimal load.

Our next propositions show lower bounds on the crash probability Fp in terms
of MT (Q) and b.

Proposition 4.3. Let Q be a quorum system. Then Fp(Q) ≥ pMT (Q) = pf+1

for any p ∈ [0, 1].
Proof. Consider a minimal transversal T with |T | =MT (Q). If all the elements

of T crash, then every quorum contains a crashed element, so Fp(Q) ≥ pMT (Q).
Proposition 4.4. Let Q be a b-masking quorum system. Then Fp(Q) ≥ pc(Q)−2b

for any p ∈ [0, 1].
Proof. Let Q ∈ Q be a minimal quorum with |Q| = c(Q), and consider Z ⊂ Q,

|Z| = 2b. Since Q is b-masking, then |R ∩ Q| ≥ 2b + 1 for any R ∈ Q, and so
|(Q \ Z) ∩ R| ≥ 1 and Q \ Z is a transversal. Therefore MT (Q) ≤ c(Q)− 2b, which
we plug into Proposition 4.3.

The next proposition is less general than Proposition 4.4, but it is applicable for
most of our constructions and it gives a much tighter bound.

Proposition 4.5. Let Q be a b-masking quorum system such that MT (Q) ≤
(IS(Q) + 1)/2. Then Fp(Q) ≥ pb+1 for any p ∈ [0, 1].

Proof. IfMT (Q) ≤ (IS(Q)+1)/2, then from Corollary 3.7 we have that b+1 =
MT (Q), which again we plug into Proposition 4.3.

4.2. Quorum system composition. Quorum system composition is a well-
known technique for building new systems out of existing components. We compose
a quorum system S over another system R by replacing each element of S with a
distinct copy of R. In other words, when element i is used in a quorum S ∈ S we
replace it with a complete quorum from the ith copy of R. Using the terminology of
reliability theory, the system S ◦ R has a modular decomposition where each module
is a copy of R. Formally, we have the following.

Definition 4.6. Let S and R be two quorum systems, over universes of sizes
nS and nR, respectively. Let R1, . . . ,RnS

be nS copies of R over disjoint universes.
Then the composition of S over R is

S ◦ R =
{⋃

Ri : S ∈ S, Ri ∈ Ri for all i ∈ S
}
.

The next theorem summarizes the properties of quorum composition.
Theorem 4.7. Let S and R be two quorum systems, and let Q = S ◦ R. Then
• The universe size is nQ = nSnR.
• The minimal quorum size is c(Q) = c(S)c(R).
• The minimal intersection size is IS(Q) = IS(S)IS(R).
• The minimal transversal size is MT (Q) =MT (S)MT (R).
• Denote the crash probability functions of S and R by s(p) = Fp(S) and r(p) =

Fp(R). Then Fp(Q) = s(r(p)).
• The load is L(Q) = L(S)L(R).

Proof. The behavior of the combinatorial parameters nQ, c(Q), IS(Q), and
MT (Q) is obvious. The behavior of Fp(Q) is standard in reliability theory (cf. [5]).
As for the load, consider the following strategy: pick a quorum S ∈ S using the
optimal strategy for S. Then for each element i ∈ S, pick a quorum Ri ∈ Ri using
the optimal strategy for (the ith copy of) R. Clearly this strategy induces a load of
L(S)L(R), and hence L(Q) ≤ L(S)L(R).

We now show the inequality in the opposite direction. Enumerate the elements of
Q by denoting the jth element in Ri by uij , let Q(S) = {⋃Ri : Ri ∈ Ri for all i ∈ S}
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be the set of all quorums that are based on some S ∈ S, and let wQ be an access
strategy on Q. Then wQ induces a strategy wS on S defined by

wS(S) =
∑

Q∈Q(S)

wQ(Q).(4.1)

The load on an element i ∈ S (i.e., the frequency of accessing the quorum system Ri)
is then lwS (i) =

∑
S	i,S∈S wS(S). Similarly, wQ induces a strategy on each copy Ri

defined by

wRi(R) =

( ∑
Q⊇R

wQ(Q)
)/

lwS (i).(4.2)

This wRi is well defined when lwS (i) > 0. It is easy to verify that wS and wRi are
indeed strategies, i.e., that the probabilities add up to 1.

Claim 4.8. Let lwQ(uij) be the load induced by wQ on an element uIj ∈ Ri, and
let lwRi (uij) be the load induced on it by wRi . Then lwQ(uij) = lwS (i) · lwRi (uij).

Proof of Claim. Using (4.1) and (4.2) we have that

lwS (i) · lwRi (uij) = lwS (i)
∑
R	uij

wRi(R) = lwS (i)
∑
R	uij

( ∑
Q⊇R

wQ(Q)
)/

lwS (i)

=
∑
R	uij

∑
Q⊇R

wQ(Q) =
∑
Q	uij

wQ(Q) = lwQ(uij).

To complete the proof of Theorem 4.7, assume that wQ is an optimal strategy
for Q. Consider the copy Ri for which lwS (i) is maximal, i.e., LwS (S) = lwS (i), and
let uij be the maximally loaded element in this Ri. Clearly lwS (i) > 0 so wRi is well
defined for this i. Note that we do not require uij to be the maximally loaded element
in all of Q. Using the claim and the minimality of L(S) and L(R) we obtain that

L(Q) = LwQ(Q) ≥ lwQ(uij) = lwS (i) · lwRi (uij)

= LwS (S) · LwRi (R) ≥ L(S)L(R).
By combining this inequality with the upper bound we had before we conclude that
L(Q) = L(S)L(R).

The multiplicative behavior of the combinatorial parameters in composing quo-
rum systems provides a powerful tool for “boosting” existing constructions into larger
systems with possibly improved characteristics. Below, we use quorum composition
in two cases and demonstrate that this technique yields improved constructions over
their basic building blocks, for appropriately larger system sizes. In particular, in
section 6 we show a composition that allows us to transform any regular quorum
construction into a (larger) b-masking quorum system.

5. Simple systems. In this section we show two types of constructions, M-Grid
and RT. These systems significantly improve upon the original constructions of [25];
however, both are still suboptimal in some parameter: M-Grid has optimal load but
can mask only up to b = O(

√
n) failures and has poor crash probability; and RT

can mask up to b = O(n) failures and has near-optimal crash probability but has
suboptimal load.

In sections 6 and 7 we present systems which are superior to the M-Grid and RT.
Nonetheless, we feel that the simplicity of the M-Grid and RT systems, and the fact
that they are suitable for very small universe sizes, are what makes them appealing.
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Fig. 1. The multigrid construction, n = 7× 7, b = 3, with one quorum shaded.

5.1. The M-Grid system. We begin with the M-Grid system, which achieves
an optimal load among b-masking quorum systems, where b ≤ (

√
n − 1)/2. The

idea of the construction is as follows. Arrange the elements in a
√
n × √

n grid. A
quorum in an M-Grid consists of any choice of

√
b+ 1 rows and

√
b+ 1 columns, as

shown in Figure 1. Formally, denote the rows and columns of the grid by Ri and Ci,
respectively, where 1 ≤ i ≤ √

n. Then, the quorum system is

M-Grid(b) =




⋃
j∈J

Cj ∪
⋃
i∈I

Ri : J, I ⊆ {1 . . .√n}, |J | = |I| = √
b+ 1


 .

Proposition 5.1. The multigrid M-Grid(b) is a b-masking quorum system for
b ≤ (√n− 1)/2.

Proof. Consider two quorums R,S ∈ M-Grid(b). If they have either a row or
a column in common, then |R ∩ S| ≥ √

n ≥ 2b + 1 and we are done. Otherwise
the intersection of S’s columns with R’s rows is disjoint from the intersection of R’s
columns with S’s rows, so |R ∩ S| ≥ 2

√
b+ 1

√
b+ 1 > 2b+ 1. Therefore consistency

holds.
Resilience holds since f = MT (M-Grid(b)) − 1 = √

n − √
b+ 1 ≥ b. Therefore

MT (M-Grid(b)) ≥ b+ 1, and Lemma 3.6 finishes the proof.

Proposition 5.2. L(M-Grid(b)) ≈ 2
√

b+1
n .

Proof. Since M-Grid(b) is fair we can use Proposition 3.9 to get L(M-Grid(b)) =
c(M-Grid(b))/n.

Remark. The load of M-Grid(b) is within a factor of
√
2 from the optimal load

which can be achieved for b ≈ √
n/2.

A disadvantage of the M-Grid system is its poor asymptotic crash probability.
If crashes occur with some constant probability p, then any configuration of crashes
with at least one crash per row disables the system. Therefore, as shown by [20, 40],

Fp(M-Grid) ≥ (1− (1− p)
√
n)

√
n −→
n→∞ 1.

5.2. RT systems. An RT system RT(k,  ) of depth h is built by taking a simple
building block, which is an  -of-k threshold system (with k >  > k/2), and recursively
composing it over itself to depth h. In what follows, we often omit the depth parameter
h when it has no effect on the discussion. The RT systems generalize the recursive
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Fig. 2. An RT(4, 3) system of depth h = 2, with one quorum shaded.

majority constructions of [29], the HQC system of [19] is an RT(3, 2) system, and in
fact the threshold system of [25] can be viewed as a trivial RT(4b+ 1, 3b+ 1) system
with depth h = 1. As an example throughout this section we will use the RT(4, 3)
system, depicted in Figure 2.

Proposition 5.3. An RT(k,  ) system of depth h is a fair quorum system, with
n = kh elements, quorums of size c(RT(k,  )) =  h, intersection size of IS(RT(k,  )) =
(2 − k)h, and minimal transversals of size MT (RT(k,  )) = (k −  + 1)h.

Proof. The basic  -of-k system is symmetric (and therefore fair), with c( -of-k) =
 , MT ( -of-k) = k −  + 1, and IS( -of-k) = 2 − k. The combinatorial parameters
are computed by activating Theorem 4.7 h times and the composition preserves the
fairness.

Plugging this into Corollary 3.7 we obtain the following.
Corollary 5.4. An RT(k,  ) system over a universe of size n is a b-masking

quorum system for

b = min{(nlogk(2�−k) − 1)/2, nlogk(k−�+1) − 1}.
In the 3-of-4 example we have IS(3-of-4) = MT (3-of-4) = 2 and c(3-of-4) = 3.

Therefore for the whole system (to depth log4 n) we get c(RT(4, 3)) = nlog4 3 = n0.79,
with IS(RT(4, 3)) = MT (RT(4, 3)) = √

n and thus b = (
√
n − 1)/2. Note that the

basic 3-of-4 system is not even 1-masking since intersections of size 2 are too small;
however, already from h = 2 (i.e., n = 16) we obtain a masking system.

Proposition 5.5. The load L(RT(k,  )) = n−(1−logk �).
Proof. Since RT(k,  ) is fair we can use Proposition 3.9 to get L(RT(k,  )) =

c(RT(k,  ))/n.
Remark. In general the load is suboptimal for this construction. For instance, in

the RT(4, 3) system we obtain L(RT(4, 3)) = n−0.21. However for b = (
√
n− 1)/2 we

could hope for a load of
√
(2b+ 1)/n = n−0.25.

Proposition 5.6. There exists a unique critical probability 0 < pc < 1/2 for
which

lim
h→∞

Fp(RT(k,  ) of depth h) =

{
0, p < pc,

1, p > pc.

Proof. Let g(p) be the crash probability function of the  -of-k system and let
F (h) = Fp(RT(k,  ) of depth h) denote the crash probability for the RT(k,  ) system
of depth h. Then F (h) obeys the recurrence

F (h) =

{
g(F (h− 1)), h ≥ 1,
p, h = 0.

(5.1)



1898 DAHLIA MALKHI, MICHAEL K. REITER, AND AVISHAI WOOL

Now g(p) is a reliability function, and therefore it is “S-shaped” (see [5]). This implies
that there exists a unique critical probability 0 < pc < 1 for which g(pc) = pc, such
that g(p) < p when p < pc and g(p) > p when p > pc (and [34] shows that for quorum
systems such as RT in fact pc < 1/2). Therefore if p < pc, then repeated applications
of recurrence (5.1) would decrease F (h) arbitrarily close to 0, and when p > pc the
limit is 1.

Proposition 5.7. If p < 1/
(
k
�−1

)
and  < k, then Fp(RT(k,  )) < exp(−Ω

(nlogk(k−�+1))), which is optimal for systems with resilience f = nlogk(k−�+1).
Proof. Let g(p) and F (h) be as in the proof of Proposition 5.6. Any configuration

of at least k −  + 1 crashes disables the  -of-k system, so

g(p) =

k∑
j=k−�+1

(
k

j

)
pj(1− p)k−j .

By Lemma A.2 (see Appendix A) we have that

g(p) ≤
(

k

 − 1
)
pk−�+1.

Plugging this into (5.1) gives that

F (h) ≤
(

k

 − 1
)1+(k−�+1)+···+(k−�+1)h−1

p(k−�+1)h

<

[(
k

 − 1
)
p

](k−�+1)h

.

If p < 1/
(
k
�−1

)
, then the last expression decays to zero with h, so Fp(RT(k,  )) <

exp(−Ω(nlogk(k−�+1))).
The lower bound of Proposition 4.3 shows that

Fp(RT(k,  )) ≥ pn
logk(k−�+1)

,

so our analysis is tight.
For the RT(4, 3) system a direct calculation shows that g(p) = 6p2 − 8p3 + 3p4

and pc = 0.2324. Therefore Proposition 5.6 guarantees that when the element crash
probability is in the range p < 0.2324, then Fp → 0 when n → ∞. Furthermore, when
p < 1/6 then Proposition 5.7 shows that the decay is rapid, with Fp(RT(4, 3)) <

(6p)
√
n, which is optimal.

6. boostFPP. In this section we introduce a family of b-masking quorum sys-
tems, the boosted finite projective planes, which we denote by boostFPP. A boostFPP
system is a composition of a finite projective plane (FPP) over a threshold system
(Thresh).

The first component of a boostFPP system is an FPP of order q (a good reference
on FPPs is [14]). It is known that FPPs exist for q = pr when p is prime. Such an
FPP has nF = q2 + q + 1 elements and quorums of size c(FPP) = q + 1. This is a
regular quorum system, i.e., it has intersections of size IS(FPP) = 1. The minimal
transversals of an FPP are of size MT (FPP) = q + 1 (in fact the only transversals
of this size are the quorums themselves). The load of FPP was analyzed in [31] and
shown to be L(FPP) = q+1

nF
≈ 1/√nF , which is optimal for regular quorum systems.
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The second component of a boostFPP is a Thresh system, with nT = 4b + 1
elements and a threshold of 3b+1. This is a b-masking quorum system in itself, with
IS(Thresh) = 2b+ 1, MT (Thresh) = b+ 1, and a load of L(Thresh) ≈ 3/4.

Proposition 6.1. Let boostFPP(q, b) = FPP(q) ◦ Thresh(3b + 1 of 4b + 1).
Then the composed system has n = (4b+1)(q2+q+1) elements, with quorums of size
c(boostFPP(q, b)) = (3b+1)(q+1), intersections of size IS(boostFPP(q, b)) = 2b+1,
and minimal transversals of size MT (boostFPP(q, b)) = (b + 1)(q + 1). Therefore
boostFPP(q, b) is a b-masking quorum system.

Proof. We obtain the combinatorial parameters by plugging the values of the
component systems into Theorem 4.7. By Corollary 3.7 we have that the system can
mask min{(b+ 1)(q + 1)− 1, b} = b failures.

Proposition 6.2. L(boostFPP(q, b)) ≈ 3
4q , which is optimal for b-masking quo-

rum systems with n ≈ 4bq2 elements.
Proof. boostFPP(q, b) is a fair quorum system since both its components are fair,

so by Proposition 3.9 we have

L(boostFPP(q, b)) = c(boostFPP(q, b))

n

=
(3b+ 1)(q + 1)

(4b+ 1)(q2 + q + 1)
≈ 3

4q
.

On the other hand, for b-masking systems with n ≈ 4bq2 elements the lower bound of
Theorem 4.1 gives

L(boostFPP(q, b)) ≥
√
2b

n
≈ 1√

2q
.

Note that the optimality of the load holds for any choice of q and b. Therefore
when the number of servers (or elements) increases, the boostFPP(q, b) system can
scale up using different policies while maintaining load optimality. There are two
extremal policies:

(1) Fix q and increase b; then the system can mask more failures when new servers
are added; however, the load on the servers does not decrease.

(2) Fix b and increase q; then the load decreases when new servers are added,
but the number of failures that the system can mask remains unchanged.

It is important to note that systems of arbitrarily high resilience can be con-
structed using the first policy since b can be chosen independently of q. In particular,
we can choose b = qa for any a > 0. Then the resulting system has n ≈ 4bq2 = 4b

a+2
a ,

and so b ≈ (
n
4

) a
a+2 , thus asymptotically approaching the resilience upper bound of n4 .

Finally we analyze the crash probability of boostFPP. The following proposition
shows that boostFPP has good availability as long as p < 1/4.

Proposition 6.3. If p < 1/4, then Fp(boostFPP(q, b)) ≤ exp(−Ω(b− log q)).
Proof. We start by estimating Fp(Thresh). Let #crashed denote the number of

crashed elements in a universe of size 4b+ 1. Let γ = b+1
4b+1 − p; thus 0 < γ < 1 when

p < 1/4. Then using the Chernoff bound we obtain

Fp(Thresh) = P(#crashed ≥ b+ 1)

= P(#crashed ≥ (p+ γ)(4b+ 1))

≤ e−2(4b+1)γ2 ≈ e−b(1−4p)2/2.(6.1)
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Next we estimate Fp(FPP). Let Q0 ∈ FPP be some quorum. Then
Fp(FPP) = 1− P(there exists Q ∈ FPP : Q is alive)

≤ 1− P(Q0 is alive) = 1− (1− p)q+1 ≤ (q + 1)p.(6.2)

Using Theorem 4.7 we plug (6.1) into (6.2) to obtain

Fp(boostFPP(q, b)) ≤ (q + 1)e−b(1−4p)2/2 = e−Ω(b−log q).

Remarks.
• In general the crash probability is not optimal; sinceMT (boostFPP(q, b)) ≈

bq then the lower bound of Proposition 4.3 shows we could hope for a crash
probability of exp(−Ω(bq)). Nevertheless if q is constant, then Fp is asymp-
totically optimal, and if b � q, then the gap between the upper and lower
bounds is small.

• The final estimate we get for Fp(boostFPP) seems poor, as the bound is
higher than the crash probability of the Thresh components. However, this
is not an artifact of overestimates in our analysis. Rather, it is a result of
the property that the crash probability of FPP is higher than p, and in fact
Fp(FPP) → 1 as shown by [37, 40]. In this light it is not surprising that
boostFPP does not have an optimal crash probability.

• The requirement p < 1/4 is essential for this system; if p > 1/4, then in fact
Fp(boostFPP) → 1 as n → ∞.

7. The M-Path system. Here we introduce the construction we call the multi-
path system, denoted by M-Path. The elements of this system are the vertices of a
triangulated square

√
n×√

n grid; formally, the vertices are the points {(i, j) ∈ R
2 :

1 ≤ i, j ≤ √
n; i, j ∈ Z}. The triangulated grid has an edge between (i1, j1) and

(i2, j2) if one of the following three conditions holds: (i) i1 = i2 and j2 = j1 + 1; (ii)
j1 = j2 and i2 = i1 + 1; (iii) i2 = i1 − 1 and j2 = j1 + 1. A quorum in the M-Path
system consists of

√
2b+ 1 disjoint paths from the left side to the right side of the

grid (LR paths) and
√
2b+ 1 disjoint top-bottom (TB) paths (see Figure 3).

The M-Path system has several characteristics similar to the basic M-Grid system
of section 5, namely an ability to mask b = O(

√
n) failures and optimal load. Its

major advantage is that it also has an optimal crash probability Fp. Moreover, it is
the only construction we have for which Fp → 0 as n → ∞ when the individual crash
probability p is arbitrarily close to 1/2. We are able to prove this behavior of Fp using
results from percolation theory [18, 13].

Remark. The system we present here is based on a triangular lattice, with el-
ements corresponding to vertices, as in [41, 6]. We have also constructed a second
system which is based on the square lattice with elements corresponding to the edges,
as in [31]. The properties of this second system are almost identical to those of
M-Path, so we omit it.

Proposition 7.1. M-Path(b) has minimal quorums of size c(M-Path) ≤
2
√

n(2b+ 1), minimal intersections of size IS(M-Path) ≥ 2b + 1, and minimal
transversals of size MT (M-Path) = √

n − √
2b+ 1 + 1. Therefore M-Path is a b-

masking quorum system for b ≤ √
n−√

2n1/4.
Proof. Let Q1, Q2 ∈ M-Path(b). Then the √2b+ 1 LR paths of Q1 intersect the√

2b+ 1 TB paths of Q2 in ≥ 2b+1 elements, since the LR and TB paths are disjoint.
As in the M-Grid system we have thatMT (M-Path(b)) = √

n−√
2b+ 1+1, so when

b ≤ √
n−√

2n1/4 it follows that MT (M-Path(b)) ≥ b+ 1 and we are done.
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Fig. 3. A multipath construction on a 9× 9 grid, b = 4, with one quorum shaded.

Proposition 7.2. L(M-Path(b)) ≤ 2
√

2b+1
n , which is optimal.

Proof. The strategy only uses straight line LR and TB paths. It picks
√
2b+ 1

of the
√
n rows uniformly at random and likewise for the columns. Clearly the load

equals the probability of accessing some element in position i, j, which is

L(M-Path) ≤ P(row i chosen) + P(column j chosen)

≤ 2
( √

n− 1√
2b+ 1− 1

)/( √
n√

2b+ 1

)
= 2

√
2b+ 1/

√
n.

By Corollary 4.2 this is optimal.

Proposition 7.3. Fp(M-Path(b)) ≤ exp(−Ω(
√
n−√

b)) for any p < 1/2, which

is optimal for systems with resilience f = O(
√
n−√

b).

Proof. We use the notation Pp(E) to denote the probability of event E defined on
the grid when the individual crash probability is p. A path is called “open” if all its
elements are alive.

Let LR be the event “there exists an open LR path in the grid,” and let LRk be
the event “there exist k open LR paths.” A failure configuration in M-Path(b) is one
in which either

√
2b+ 1 open LR paths or

√
2b+ 1 open TB paths do not exist. By

symmetry we have that

Fp(M-Path(b)) ≤ 2Pp(LR√
2b+1) = 2(1− Pp(LR√

2b+1)).(7.1)

Fix some p′ such that p < p′ < 1/2. Then by Theorem B.3 (see Appendix B) we have
that

1− Pp(LR√
2b+1) ≤

(
1− p

p′ − p

)√
2b+1−1

[1− Pp′(LR)].(7.2)
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Table 2
Constructions in this paper (n = number of servers).

System b < f L Fp

Threshold [25] n/4 O(n− b) 1/2 +O(b/n) exp(−Ω(f)) ∗
Grid [25]

√
n/3 O(

√
n− b) O(b/

√
n) −→

n→∞ 1

M-Grid
√
n/2 O(

√
n−√

b) O(
√
b/n) † −→

n→∞ 1

RT(k, �)‡ O(min{nα1 , nα2}) ‡ O(b) n−(1−logk �) exp(−Ω(f)) ∗

boostFPP n/4 O(
√
bn) O(

√
b/n) † exp(−Ω(b− log(n/b)))

M-Path (1− o(1))
√
n O(

√
n−√

b) O(
√
b/n) † exp(−Ω(f)) ∗

† Optimal for b-masking systems
∗ Optimal for f -resilient systems
‡ α1 = logk(2�− k) and α2 = logk(k − �+ 1)

Plugging the bound on Pp′(LR) from Theorem B.1 into (7.2) and (7.1) yields

Fp(M-Path(b)) ≤ 2
(
1− p

p′ − p

)√
2b+1−1

e−ψ(p′)
√
n

= 2e
−ψ(p′)

√
n+(

√
2b+1−1) ln

(
1−p
p′−p

)

for some function ψ(p′) > 0. Now
√
2b+ 1 = O(n1/4), so for large enough n we can

certainly write

Fp(M-Path(b)) ≤ exp(−Ω(
√
n−

√
b)).

This is optimal by Proposition 4.3.

8. Discussion. We have presented four novel constructions of b-masking quo-
rum systems. For the first time in this context, we considered the resilience of such
systems to crash failures in addition to their tolerance of (possibly fewer) Byzantine
failures. Each of our constructions is optimal in either its load or its crash probability
(for sufficiently small p). Moreover, one of our constructions, namely M-Paths, is op-
timal in both measures. One of our constructions is achieved using a novel boosting
technique that makes all known benign fault-tolerant quorum constructions available
for Byzantine environments (of appropriate sizes). In proving optimality of our con-
structions, we also contribute lower bounds on the load and crash probability of any
b-masking quorum system.

The properties of our various constructions are summarized in Table 2, along-
side the properties of two other b-masking constructions proposed in [25], namely
Threshold and Grid.

Determining the best quorum construction depends on the goals and constraints
of any particular settings, as no system is advantageous in all measures. For example,
suppose we fix n to be 1024, the desired load L to be approximately 1/4, and assume
that the individual failure probability of components is 1/8. In these settings, an
M-Grid system can tolerate b = 15 Byzantine failures and up to f = 28 benign
failures, but it has a failure probability Fp ≥ 0.638. In the same settings, a boostFPP
system (with n = 1001, q = 3) can tolerate b = 19, up to f = 79 benign failures, with
somewhat better failure probability: it has Fp ≤ 0.372. The M-Path construction,
with four LR and four TB paths per quorum, has b = 7 here and can tolerate up to
f = 29 benign failures, but it has a good crash probability: Fp ≤ 0.001 (using the
estimate following Theorem B.1, together with Theorem B.3 with p′ = 1/7). In this
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setting, the RT(4, 3) construction, with depth h = 5, is the best, with b = 15, f = 31,
and an excellent failure probability of only Fp ≤ 0.0001.

More generally, if masking large numbers of Byzantine server failures is important,
then of the systems listed in Table 2, only Threshold and boostFPP can provide the
highest possible masking ability, i.e., up to b < n/4. However, Threshold can mask
n/4 Byzantine failures for any system size, whereas boostFPP approaches such degree
of Byzantine resilience only for very large n. If, on the other hand, load is more
crucial, then Threshold suffers in load whereas boostFPP offers reduced load, as do
the other three systems in this paper, albeit with lower masking ability. If masking
fewer Byzantine server failures is allowable, then other quorum constructions can be
used, in particular RT and M-Path. These two constructions have similar masking
ability, resilience, and load, but M-Path has asymptotically superior crash probability
when p is close to 1/2.

Finally, we note that it is impossible to achieve optimal resilience and load si-
multaneously: since necessarily f ≤ c(Q), Theorem 4.1 implies that f ≤ nL(Q), i.e.,
when load is low then so is resilience, and when resilience is high then so is load. In
order to break this trade-off, in [28] we propose relaxing the intersection property of
masking quorum systems, so that “quorums” chosen according to a specific strategy
intersect each other in enough correct servers to maintain correctness of the system
with a high probability.

Appendix A. Combinatorial lemmas.

Lemma A.1. Let 0 ≤ i, d ≤ k be integers. Then
( k
d+i)
(kd)

≤ (
k−d
i

)
.

Proof.

(
k
d+i

)
(
k
d

) =
k!d!(k − d)!

(d+ i)!(k − d− i)!k!
=

(k − d)!

(k − d− i)!

d!

(d+ i)!
≤ (k − d)!

(k − d− i)!i!
=

(
k − d

i

)
.

Lemma A.2. Let 0 ≤ d ≤ k be integers and let p ∈ [0, 1]. Then

k∑
j=d

(
k

j

)
pj(1− p)k−j ≤

(
k

d

)
pd.

Proof.

k∑
j=d

(
k

j

)
pj(1− p)k−j =

(
k

d

)
pd

k∑
j=d

(
k
j

)
(
k
d

)pj−d(1− p)k−j ,

so it suffices to show that the last sum is ≤ 1. But using Lemma A.1 we get
k∑
j=d

(
k
j

)
(
k
d

)pj−d(1− p)k−j =
k−d∑
i=0

(
k
d+i

)
(
k
d

) pi(1− p)k−d−i

≤
k−d∑
i=0

(
k − d

i

)
pi(1− p)k−d−i = [p+ (1− p)]k−d = 1.
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Appendix B. Theorems of percolation theory. In this section we list the
definitions and results that are used in our analysis of the M-Path system, following
[18, 13].

The percolation model we are interested in is as follows. Let Z be the graph of the
(infinite) triangle lattice in the plane. Assume that a vertex is closed with probability
p and open with probability 1 − p, independently of other vertices. This model is
known as site percolation on the triangle lattice. Another natural model, which plays
a minor role in our work, is the bond percolation model. In it the edges are closed
with probability p.

A key idea in percolation theory is that there exists a critical probability, pc, such
that graphs with p < pc exhibit qualitatively different properties than graphs with
p > pc. For example, Z with p < pc has a single connected (open) component of
infinite size. When p > pc there is no such component. For site percolation on the
triangle pc = 1/2 [17].

The following theorem shows that when the probability p for a closed vertex is
below the critical probability, the probability of having long open paths tends to 1
exponentially fast. Recall that LR is the event “there exists an open LR path in the√
n×√

n grid.” Then [30] (see also [13, p. 287]) implies the following.
Theorem B.1. If p < 1/2, then Pp(LR) ≥ 1 − e−ψ(p)

√
n, for some ψ(p) > 0

independent of n.
Remark. The dependence of ψ on p is such that ψ(p) → 0 when p → 1/2.

However, for p’s not too close to 1/2 we can obtain concrete estimates using elementary
techniques. For instance, a counting argument similar to that of Bazzi [6] shows that

Pp(LR) ≥ 1−
√
n(3p)

√
n

1− 3p ,

when p < 1/3.
Definition B.2. Let E be an event defined in the percolation model. Then the

interior of E with depth r, denoted Ir(E), is the set of all configurations in E which
are still in E even if we perturb the states of up to r vertices.

We may think of Ir(E) as the event that E occurs and is “stable” with respect
to changes in the states of r or fewer vertices. The definition is useful to us in the
following situation. If LR is the event “there exists an open left-right path in a
rectangle D,” then it follows that Ir(LR) is the event “there are at least r+1 disjoint
open left-right paths in D.”

Theorem B.3 (see [2]). Let E be an increasing event and let r be a positive
integer. Then

1− Pp(Ir(E)) ≤
(
1− p

p′ − p

)r
[1− Pp′(E)]

whenever 0 ≤ p < p′ ≤ 1.
The theorem amounts to the assertion that if E is likely to occur when the crash

probability is p′, then Ir(E) is likely to occur when the crash probability p is smaller
than p′.
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