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ABSTRACT

The Siemens S7 protocol is commonly used in SCADA systems for communications between a
Human Machine Interface (HMI) and the Programmable Logic Controllers (PLCs). This paper
presents a model-based Intrusion Detection Systems (IDS) designed for S7 networks. The approach
is based on the key observation that S7 traffic to and from a specific PLC is highly periodic;
as a result, each HMI-PLC channel can be modeled using its own unique Deterministic Finite
Automaton (DFA). The resulting DFA-based IDS is very sensitive and is able to flag anomalies
such as a message appearing out of its position in the normal sequence or a message referring
to a single unexpected bit. The intrusion detection approach was evaluated on traffic from two
production systems. Despite its high sensitivity, the system had a very low false positive rate - over
99.82% of the traffic was identified as normal.
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1. INTRODUCTION

Industrial facilities are relying to an ever-larger
extent on Industrial Control Systems (ICS).
The NIST Guide to ICS Security (Stouffer,
Falco, & Scarfone, 2013) explains that ICS is a
general term that encompasses several types of
control systems, including Programmable Logic
Controllers (PLC), Distributed Control Sys-
tems (DCS), Supervisory Control And Data Ac-
quisition (SCADA) systems, and other control
system configurations. An automation system
within a campus is usually referred to as a DCS,
while SCADA systems typically comprise of dif-
ferent stations distributed over large geograph-
ical areas.

1.1 Background

SCADA systems are used for monitoring and
controlling numerous Industrial Control Sys-
tems (ICS). In particular, SCADA systems
are used in critical infrastructure assets such

as chemical plants, electric power generation,
transmission and distribution systems, water
distribution networks, and waste water treat-
ment facilities. SCADA systems have a strate-
gic significance due to the potentially serious
consequences of a fault or malfunction.

SCADA systems typically incorporate sen-
sors and actuators that are controlled by
Programmable Logic Controllers (PLCs), and
which are themselves managed by a Human
Machine Interface (HMI). PLCs are computer-
based solid-state devices that were originally
designed to perform the logic functions exe-
cuted by electrical hardware (relays, switches,
and mechanical timer/counters). PLCs have
evolved into controllers with the capability of
controlling complex processes. PLCs are gener-
ally used for discrete control in discrete manu-
facturing.

SCADA systems were originally designed for
serial communications, and were built on the
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premise that all the operating entities would
be legitimate, properly installed, perform the
intended logic and follow the protocol. Thus,
many SCADA systems have almost no measures
for defending against deliberate attacks. Specif-
ically, SCADA network components do not ver-
ify the identity and permissions of other compo-
nents with which they interact (i.e., no authen-
tication and authorization mechanisms); they
do not verify message content and legitimacy
(i.e., no data integrity checks); and all the data
sent over the network is in plaintext (i.e., no en-
cryption to preserve confidentiality). Therefore,
deploying an Intrusion Detection Systems (IDS)
in a SCADA network is an important defensive
measure.

The Siemens S7 is one of the leading proto-
cols used in SCADA networks. Siemens S7 Pro-
grammable Logic Controllers (PLCs) (Siemens,
2014) are estimated to have over 30% of the
worldwide PLC market (Electrical Engineering
Blog, 2013). The platform is so popular that
other companies (e.g., (VIPA - A Yaskawa com-
pany, 2014)) offer compatible PLCs.

1.2 Related Work

Since the S7 protocol is proprietary, there is lit-
tle published information about attacks against
it. An exception is the work of (Beresford,
2011). The author showed that the standard
S7 protocol is not encrypted, or authenticated,
it is susceptible to spoofing, session hijacking,
Denial of Service (DoS) attacks, and other at-
tacks. Gaining access to the control network
gives the attacker full access to the PLCs and
allows attacks against the engineering worksta-
tion as well.

(Zhu, Joseph, & Sastry, 2011) evaluated sev-
eral SCADA-specific Network Intrusion Detec-
tion Systems (NIDSs), but they mentioned that,
to their best knowledge, none of the surveyed
systems has been tested on real operational
SCADA network. Due to the lack of access
to production ICS networks, many works deal
with the issue of building a SCADA testbed
that enables experimental capabilities of check-
ing vulnerabilities and validating security solu-
tions (Genge, Siaterlis, Nai Fovino, & Masera,

2012; Hahn et al., 2010; Mallouhi, Al-Nashif,
Cox, Chadaga, & Hariri, 2011). In contrast, one
of the important aspects of our work is that the
intrusion detection approach is evaluated using
real traffic from production SCADA networks.

(Yang, Usynin, & Hines, 2006) used an Auto
Associative Kernel Regression (AAKR) model
and applied it on a SCADA system looking for
matching patterns. The AAKR model used nu-
merous indicators, representing network traffic
and hardware-operating statistics to predict the
normal behavior. Hence, this model needs to
monitor different indicators for different intru-
sion methods, and must manage a large number
of potentially valuable variables.

Several recent studies (such as (Atassi, El-
hajj, Chehab, & Kayssi, 2014) & (Chen, Hsiao,
Yang, & Ou, 2013)) suggest anomaly-based de-
tection for SCADA systems that is based on
Markov chains. However, (Ye, Zhang, & Bor-
ror, 2004) showed that although the detection
accuracy of this technique is high, the number
of ‘false positive’ values is also high, as it is sen-
sitive to noise.

(Hadziosmanovic, Bolzoni, Hartel, & Etalle,
2011) used the logs generated by the control ap-
plication running on the HMI to detect anoma-
lous patterns of user actions on process control
application. The focus of this work was on the
threats that can be triggered by a single user
action. The authors acknowledged that “an at-
tacker could manipulate logs by sending false
data to the control application”. This model is
also susceptible to replay attacks.

(Barbosa, Sadre, & Pras, 2012) studied the
periodicity characteristics of SCADA traffic.
They measured dominant periods of between 1-
60 seconds in their datasets. They also observed
changes in the baseline patterns of the SCADA
traffic they collected, which they related to the
start (or end) of non periodic high throughput
flows. They speculated that these changes are
due to changes in the controlled environment,
such as water tanks becoming full and pipes be-
ing closed.

(Cheung et al., 2007) designed a model-based
intrusion detection appliance for Modbus/TCP
using: (i) a protocol-level technique that verifies
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Figure 1 The S7 packet encapsulated inside TCP/IP

IP Header TCP Header TPKT Header COTP Header S7 (Header and PDU)

the Modbus/TCP specifications for individual
fields in Modbus/TCP messages; (ii) a commu-
nication pattern modeling technique based on
Snort rules (Roesch, 1999); and (iii) a learn-
ing model that describes the expected trends
in the availability of servers and services. In
subsequent work, (Valdes & Cheung, 2009) in-
corporated adaptive statistical learning meth-
ods into the system to detect for communication
patterns among hosts and traffic patterns in in-
dividual flows. More recently (Briesemeister,
Cheung, Lindqvist, & Valdes, 2010) integrated
the developed intrusion detection technologies
into the EMERALD event correlation frame-
work (Porras & Neumann, 1997).

(Goldenberg & Wool, 2013) developed a
model-based approach (the GW model) for de-
tecting intrusions in Modbus SCADA Networks.
Following this approach, the traffic on the con-
trol network is divided into separate logical
HMI-PLC channels, each containing only a sin-
gle PLC’s traffic. In the GW model, the HMI-
PLC traffic pattern for a given channel is pe-
riodic, repeating the same sequence of queries
(and matching responses) over and over. Hence
each of these channels is modeled as Mealy De-
terministic Finite Automaton (DFA).

One of our goals in this study is to investigate
how well the GW model captures the behaviour
of the S7 protocol, which is much richer than
the simple Modbus protocol.

1.3 Contribution

This paper describes a model-based IDS de-
signed for S7 networks. The detection approach
is based on our observation that, like Modbus
traffic, S7 traffic to and from a specific PLC is
highly periodic, with the same messages being
sent repeatedly according to a fixed pattern. As
a result, it is possible to model each HMI-PLC
channel using its own DFA. The resulting DFA-
based intrusion detection system looks deep into
S7 packets and produces a traffic model that

captures detailed packet characteristics. Thus,
the intrusion detection approach is very sensi-
tive and is able to flag anomalies such as a mes-
sage appearing out of position in the normal
sequence or a message referring to a single un-
expected bit.

1.4 S7 Protocol Details

Based on live S7 traffic traces collected from
two production ICSs, we provide one of the first
characterizations of the Siemens S7 SCADA
protocol. Our starting point was the DFA based
model of (Goldenberg & Wool, 2013), that was,
so far, tested successfully on Modbus traffic.
Using our observations from the analyzed traf-
fic, we adapted the model to fit the richer S7
semantics. In particular, the S7 packet struc-
ture is much more complex than that of Mod-
bus, allowing simultaneous reference to multi-
ple variables of different data types. Moreover
the grouping of variable references into pack-
ets is not always fixed, and the protocol allows
multiple requests in flight. After incorporating
these S7 features into the DFA-based model, our
system was able to model the traffic very accu-
rately, with extremely low false positive rates:
Over 99.82% of the traffic was identified as nor-
mal.

2. THE DFA-BASED
MODEL FOR MODBUS

The GW model (Goldenberg & Wool, 2013) was
developed and tested on Modbus traffic. Mod-
bus is a simple request-response protocol widely
used in SCADA networks. A Modbus HMI
sends a request to a Modbus PLC. The request
includes a function code specifying the service,
and the address range of data items. Modbus
functions include reading values from coils (bit-
size entities) or registers (16-bit entities), writ-
ing values to coils and registers, and perform-
ing diagnostics. After the PLC processes the
request, it sends a response back to the HMI.
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Figure 2 S7 0x32 PDU: Header for ROSCTR 1 or 3, Function Code 4 or 5 (Read/Write)
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In the GW model, the key assumption is
that traffic is periodic, therefore, each HMI-PLC
channel is modeled by a Mealy Deterministic Fi-
nite Automaton (DFA). The DFA for Modbus
has the following characteristics:

• A symbol is defined as a concatenation of
the message type, function code, and ad-
dress range, totaling 33-bits.

• A state is defined for each message in the
periodic traffic pattern.

The GW model suggests an IDS that com-
prises two stages: A learning stage, where a
fixed number of packets is captured, the vari-
ous channels are detected, the pattern length
is revealed, and a dedicated DFA is automati-
cally built for each channel. The learning as-
sumes that the sniffed traffic is benign; and an
enforcement stage, where traffic is monitored for
each channel (according to its DFA), and proper
events are triggered.

The GW model categorizes input symbols
into two groups: Known and Unknown. The
Known group consists of all the input symbols
that were observed during the learning stage,
and have a matching DFA state. The Unknown
symbols are all the rest. Four transition types
(output symbols) are defined in the DFA: ‘Nor-
mal’, ‘Miss’, ‘Retransmission’, and ‘Unknown’.

The key strengths of the GW model are:
the fact that it goes much deeper than other
intrusion detection models into the details of
the SCADA protocol specification, its ability to
capture inter-packet relationship, and the clear
semantics of the detection process. The model
was successfully evaluated against real Modbus
traffic, and was able to detect real anomalies,
while exhibiting an extremely low ‘false posi-
tive’ rate.

3. S7 COMMUNICATION
OVER TCP/IP

Since the S7 protocol is proprietary and lit-
tle is published about it, this section sum-
marizes some of its key features, before delv-
ing into our modeling. The information in
this section is based on the reverse engineer-
ing work of (Marsching, 2013)(Hergenhahn,
2011)(Nardella, 2014)(Wiens, 2014) augmented
by our own analysis of live S7 traffic.

3.1 The S7 PLC Platform

The Siemens SIMATIC S7 product line was in-
troduced in 1995, and includes both standard
PLC models (S7-200, S7-300 and S7-400), and
new generation PLCs, the S7-1200, and the S7-
1500 (introduced in 2009 and 2012 respectively).

Siemens has its own HMI software for its
SIMATIC products called STEP7. The Siemens
S7 Ethernet Driver (Kepware Technologies,
n.d.) provides connectivity to Siemens S7 de-
vices via the Siemens TCP/IP Ethernet proto-
col.

The memory of an S7 PLC is divided into dif-
ferent areas (see (Kepware Technologies, n.d.)).
Of these, the Data Blocks area is used to store
the internal state of the program running on the
PLC. Within the Data Blocks area, each Data
Block is identified by a 16-bit DB number, and
contains multiple data items each with a 24-bit
address. Thus a location in the PLC memory is
identified as follows:

• For the Input, Output, Peripheral, and
Marker Flags memory areas - by 32 bits
consisting of its Area code, and Address.

• For the Data Block memory area - by 48
bits consisting of its Area code, DB num-
ber, and Address.
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S7 has a rich set of data types. Each vari-
able, stored at a given location, has a type such
as: Bit, Byte, Int, Real, etc., which implies a
length (Transport size), see (Kepware Technolo-
gies, n.d.).

Apart from the Siemens S7 Ethernet driver
(Kepware Technologies, n.d.), there are other
3rd-party communication suites for interfacing
and exchanging data with Siemens S7 PLCs
(e.g., The LIBNODAVE library (Hergenhahn,
2011), and Snap7 (Nardella, 2014)). In addi-
tion there is now a Wireshark dissector for S7
communication (Wiens, 2014). These software
libraries have been developed through reverse-
engineering.

The TCP/IP implementation of the S7 pro-
tocol relies on ITOT (Rose & Cass, 1987)
and communicates across the well known TCP
port 102. S7 works on top of the ISO Con-
nection Oriented Transport Protocol (COTP)
(ISO 8073:1986(E), 1986)(McKenzie, 1984) and
TPKT (Rose & Cass, 1987). Both TPKT and
COTP add their own headers (inside the TCP
segment). Thus the S7 packet is encapsulated
within the COTP packet, see Figure 1.

The S7 protocol defines formats for exchang-
ing S7 messages between devices. A device can
take the role of a client, a server or a peer. In
a client-server communication mode, the HMI
(client) device initiates the transactions (called
queries) and the PLC (server) responds by sup-
plying the requested data to the client, or by
taking the action (e.g., write operation) re-
quested in the query. In a peer-to-peer commu-
nication mode, partner (peer) devices can ex-
change unsolicited data, i.e., once the connec-
tion is established, both can send data to the
other partner. In the data we collected, only
client-server communication was observed.

Two different protocol flavours are imple-
mented by SIMATIC S7 products: The stan-
dard SIMATIC S7 PLCs implement an S7 flavor
that is identified by the protocol number 0x32,
while the new generation PLCs implement an
S7 flavor that is identified by the protocol num-
ber 0x72. Among other changes, the newer S7-
0x72 protocol also supports security features.
The two flavors are quite different, and in fact

the Wireshark dissector (Wiens, 2014) only sup-
ports the 0x32 flavor. In this article we restrict
our investigation to the S7-0x32 protocol.

3.2 The S7-0x32 PDU

The S7 PDU size is bounded. Its maximum
length varies between 112 and 960 bytes (see
(Siemens, 2013)), and is negotiated during the
connection.

A single S7 PDU can reference multiple
ranges of PLC variables. The PDU is divided
into three parts: a fixed header, a parameters
part and a data part. In a request message the
parameters part indicates which PLC variables
are being accessed, and the optional data part
includes the values that need to be written into
the variables (in a write command). The data
part includes a list of the write values (in case
of write request) or a list of read results (in case
of read response).

The PDU header includes nine fields (see Fig-
ure 2), of which the following are important to
our work:

• The Protocol Id is constant and is set to
0x32.

• The ROSCTR (Remote Operating Service
Control) field can take the values: 0x01
(request), 0x02 (acknowledge), 0x03 (re-
sponse), 0x07 (request user data), or 0x08
(request server control). We only observed
request and response in our data.

• The Request Id field is used to synchronize
between a request packet and a response
packet that are in flight (see Section 5.3).

• The Parameter Length, and Data Length
fields specify the length (in bytes) of the
parameter part and the data part of the
PDU.

• The Function Code field encodes opera-
tions such as communication setup, sys-
tem info, data read/write, block move, and
PLC control functions.

• The Item Count field (only in data
read/write functions).
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Figure 3 S7 0x32 PDU: Read/Write Request - Parameter Item

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Var Type Var Length Syntax Id Transport Size

Length DB Number

Area Address

Figure 4 S7 0x32 PDU: Header of Data Item
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Following the PDU header, there is a param-
eter area that consists of Item Count parame-
ter items (only in read/write request packets).
Each parameter item includes (see Figure 3):

• The variable specification, which includes
three fields (Type, Length and Syntax Id)
that imply certain attribute settings of the
variables in this item (e.g., permitted ad-
dress range, supported data types and ac-
cess permissions).

• A Transport Size field encodes the type
(and thus the length) of each variable/s
of the parameter item (see (Kepware Tech-
nologies, n.d.)).

• A Length field which specifies the number
of referenced variables (note that a single
parameter item can refer to a range of vari-
ables).

• An Area field which is an 8-bit identifier of
the PLC’s memory area.

• A DB (Data Block) Number field which is
a 16-bit identifier of a Data Block within
the Data Blocks area.

• Address field which is a 24-bit address of a
data item.

The number of parameter items within a PDU
is limited to 255. However both the LIBNO-
DAVE library (Hergenhahn, 2011) and the open
source code of Snap7 (Nardella, 2014) enforce a
maximum of 20 parameter items per PDU. In
the data we captured all the packets included

at most 19 items per PDU, and in fact most of
the PDUs of trace #2 and trace #3 included
exactly 19 items.

Following the parameter area, there is a list
of data items (only in write request packets, or
read response packets). Data items include the
data header and the data itself. The structure
of a data header is depicted in Figure 4.

4. COLLECTED DATASETS

(Garitano, Uribeetxeberria, & Zurutuza, 2011)
emphasize that conducting SCADA IDS re-
search based on traffic simulation has several
risks, such as lacking realism “that affects ev-
eryday use of SCADA systems”. In order to
test a proposed IDS approach as realistically as
possible, it is imperative to use real SCADA
traffic.

In this study we analyze three different traces
that were collected at real ICS facilities. The
first S7 SCADA trace was collected at a manu-
facturing plant in the building material indus-
try. The ICS here controls a manufacturing
process where raw materials are automatically
weighed and measured in a mixer. In this trace
we observed a single channel between the HMI
and an S7-compliant VIPA PLC. The next two
traces were collected at a waste water treatment
facility. The SCADA system in this plant con-
trols the maintenance of specific levels in tanks,
flow rates, and temperatures and pressures at
certain processes. It can also execute logic for
automating the starting and stopping of pumps,
opening and closing of valves, and other con-
trol functions. In these two traces we observed
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Table 1 Overview of the datasets

# Description Duration TCP Packets S7 Packets

1 Building material manufacturing plant 3242 Sec. 56843 35747
2 Waste water treatment facility 1691 Sec. 38962 21670
3 Waste water treatment facility 1204 Sec. 42465 25379

Table 2 Results of applying the basic model on S7 traffic

Dataset AER Pattern # Normal # Unknown # Miss % Normal % Unknown % Miss

#1 Part 1 8.01 8 6900 30 0 99.57 0.43 0.00
#1 Part 2 11.99 12 11592 42 0 99.64 0.36 0.00
#1 Part 3 12.09 12 17076 86 0 99.57 0.43 0.00
#2 All 10.96 12 18087 374 123 97.33 2.01 0.66
#3 Part 1 10.81 12 1392 11 3 99.00 0.78 0.21
#3 Part 2 20.13 22 20488 646 99 96.49 3.04 0.47

three channels: there were two Siemens S7-200
PLCs (each using a SIMATIC ET 200S I/O
Module), and for one of them, the HMI used
two TCP sockets simultaneously. An overview
of the dataset properties can be found in Table
1.

The traces were collected using a Wireshark
program we installed on the Microsoft Windows
7 PC running the HMI. The traces, structured
in a PCAP format, were later analyzed using
both Wireshark and our own software.

5. BUILDING A
DFA-BASED MODEL FOR S7

TRAFFIC

In the GW model (Goldenberg & Wool, 2013)
a channel is identified by the IP addresses of
the HMI and the PLC, plus the Modbus unit id
within the PLC. The S7 protocol does not have
a unit id concept, however we did observe that
the HMI sometimes opens multiple concurrent
TCP connections to the same PLC. Thus we
opted to identify a channel by the IP addresses
of the HMI and PLC, plus the TCP source port
of the HMI (the TCP destination port of the
PLC is always 102).

5.1 A Basic Model of S7

Following (Goldenberg & Wool, 2013), in order
to construct the model’s DFA, we need to de-
fine the symbols, i.e., we need to select which S7
fields constitute a symbol in the DFA’s alpha-
bet. In our basic model we selected the follow-
ing fields of the S7-0x32 PDU: ROSCTR, Pa-
rameter Length, Data Length, Error Code (if
exists), Function Code, Item Count, all the pa-
rameter items (if they exist), and all the data
header fields of data items (if they exist). We
chose not to include the ‘Request Id’ field, since
it does not encode any information related to
data acquisition or control (it is only used to
synchronize request and response packets, see
section 5.3). As in (Goldenberg & Wool, 2013),
we did not include the data part of the data
items, since the inherent variability in the data
items makes it unsuitable to be modeled by a
reasonably sized alphabet. We defer the analy-
sis of the data part to future research.

Recall that an S7 packet can refer to multi-
ple item ranges, each of which is identified by
a (32-bit or 48-bit) address location, as well as
an individual type and length. Assuming (as in
(Hergenhahn, 2011)&(Nardella, 2014)) a max-
imum of 20 parameter items per S7 PDU, the
raw number of bits in a symbol can vary be-
tween 88-1992 bits. For practical reasons, we
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decided to fix the length of the symbol at 64
bits. Therefore, we use the SHA-1 hash func-
tion to digest the concatenation of the fields,
and take the 64 least significant bits as the sym-
bol.

In our analysis we divide time into 5-second
‘time frames’. We also define the Average Event
Rate (AER) as the mean number of symbols per
second. We further define an S7 quiescent pe-
riod as a time frame during which only ‘Normal’
transitions are observed.

We ran the model’s learning stage on the col-
lected datasets with a maximum pattern length
of 75 symbols and a validation window of 300
(75 · 4) symbols. Then we ran the enforcement
stage on the full datasets using the learned pat-
terns. Table 2 shows the basic results, using
the above definitions, and Figure 5 shows the
detection of ‘Unknown’ symbols, after applying
the model on the various traces. The division
of trace #1 and trace #3 into parts is discussed
in section 6.1.

As observed in (Goldenberg & Wool, 2013)
on Modbus, Table 2 shows that the DFA accu-
rately models the vast majority of the S7 pack-
ets. Even in this basic DFA model, over 96.49%
of all packets are identified as ‘Normal’ packets.
Over 98.35% of the time frames are S7 quiescent
periods. Note that the learned pattern lengths
are nearly identical to the AER, indicating that
the systems had inherent 1-second periods.

While we observe a relatively low amount of
‘Unknown’ symbols and almost no ‘Miss’ sym-
bols in trace #1, Table 2 shows about 2-3% ‘Un-
known’ symbols and numerous ‘Miss’ symbols
in trace #2 and in the main phase (part 2) of
trace #3 (see also Figures 5c and 5d), which in-
dicate significant anomalies. In addition trace
#2 and trace #3 exhibit substantial ‘Miss’ rates
(see Figures 6a and 6b). The next sections an-
alyze the cause for these anomaly events, and
describe the modeling steps we took to mitigate
them.

5.2 Splitting an S7 Packet into
Separate Items

After inspecting many ‘Unknown’ symbols in
trace #2 and trace #3, we made the following

observation: in these traces there are changes
in the grouping of S7 items within the S7 PDU.
During these changes, the order of items within
the stream is kept constant, but some of the
items are grouped differently into PDUs. E.g.,
in trace #2 the pattern has 12 symbols (6 re-
quests and 6 responses) accessing 99 items in to-
tal. Occasionally, 18 of the items that typically
appear in the 2nd request PDU are shifted to
the 3rd request “pushing” other items into later
requests. Each of these grouping changes is re-
flected in the basic model by one or more ‘Un-
known’ symbols (and ‘Unknown’ events). We
assume that these grouping changes do not in-
dicate an anomaly, but rather a benign variation
in the acquisition timing or in the S7 transport
service.

Following the above observation, we decided
to avoid these ‘false alarms’, by applying the
model at a finer granularity. Out of each origi-
nal S7 packet that includes N items, we created
an artificial packet per item (a total of N ar-
tificial packets per original packet). Beside the
original S7 item, we copied into the artificial
packet all the fields of the original packet, that
do not include information related to the group-
ing of items within the PDU. For example, the
ROSCTR field was copied, but the parameter
length field, and the data length field, were ig-
nored. We then applied the model to the artifi-
cial packets. Since each S7 original packet may
include up to 20 parameter items, we set the
maximum pattern length to 1500 (75 · 20) sym-
bols and the validation window to 6000 (1500·4)
symbols.

Table 3 shows the results after applying
the model with PDU-splitting on S7. The
table shows that all the ‘Unknown’ symbols
were eliminated from trace #2, and the ‘Un-
known’ rate in trace #3 dropped from 3.07% to
only 0.07%. Further, the ‘Miss’ rate in these
two traces improved significantly as well, from
0.66% and 0.47% in Table 2 down to 0.18%
and 0.24% after PDU splitting. Before PDU-
splitting, Figures 6a and 6b show ‘Miss’ spikes
up to 13% AER and 8% AER respectively. Af-
ter PDU-splitting, Figures 6c and 6d show that
the peak ‘Miss’ spikes are under 5% AER.
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(c) Trace#2
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(d) Trace#3-Prt2

Figure 5 Detected ‘Unknown’ symbols after applying the model on the datasets. Each time frame
on the X axis represents 5 seconds. The Y axis shows the events as the percentage of the Average
Event Rate (AER) for each time period.

Table 3 Results after applying the model with PDU-splitting on S7 traffic. Note that the Average
Event Rate (AER) is much higher in comparison to Table 2 since each raw event (PDU) is replaced
by multiple artificial 1-item PDUs.

Dataset AER Pattern # Normal # Unknown # Miss % Normal % Unknown % Miss

#1 Part 1 45.89 46 39667 28 1 99.92 0.07 0.01
#1 Part 2 63.78 64 61824 42 0 99.93 0.07 0.00
#1 Part 3 58.18 58 82535 86 0 99.90 0.10 0.00
#2 All 180.24 198 304949 0 565 99.82 0.00 0.18
#3 Part 1 178.19 198 23150 0 16 99.93 0.00 0.07
#3 Part 2 370.20 406 389335 272 950 99.69 0.07 0.24

5.3 Synchronizing In-Flight Request
and Response Packets

In (Goldenberg & Wool, 2013) the model im-
plicitly assumes that in a clean capture of be-
nign traffic, each query packet is succeeded by
its corresponding response packet. We observed
that this assumption holds for trace #1. How-
ever in the S7 streams recorded in trace #2 and
trace #3, we noticed that a request is not al-
ways immediately followed by its correspond-
ing response. Instead the HMI sometimes is-
sues several requests before receiving the cor-
responding responses. As a result, there might

be several requests that are simultaneously in
flight on the same S7 channel. The number of
packets in flight and their location within the
pattern varies, and is apparently influenced by
timing variations. These variations in packet
order are reflected in the DFA model by ‘Miss’
events.

In this case as well, we assume that this phe-
nomenon is benign. To avoid false alarms we
decided to synchronize each request with its as-
sociated response, before taking the DFA step,
and to verify that a request packet and its cor-
responding response packet have the same Re-
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(a) Trace#2 Basic model
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(b) Trace#3-Prt2 Basic model
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(c) Trace#2 After split
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(d) Trace#3-Prt2 After split
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(e) Trace#2 After split & synch
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(f) Trace#3-Prt2 After split & synch

Figure 6 Detected ‘Miss’ symbols before and after applying the model with splitting and synchro-
nization (on trace #2 and trace #3). Each time frame on the X axis represents 5 seconds.

quest Id value. The synchronization is applied
during both the DFA learning stage and the
DFA enforcement stage. We achieve this syn-
chronization by queueing the request packets,
and handling each request packet only when
its corresponding response packet is captured.
Specifically, when a request packet is detected,
we first check whether the associated symbol is
known. In case it is known the packet is ap-
pended to the queue. Otherwise, a DFA step is
taken causing an ‘Unknown’ event, thus provid-
ing an immediate detection of ‘Unknown’ sym-
bols. When a response is detected, a request
is taken out of the queue and a DFA step is
taken. Then the response is taken as an input
to another DFA step.

Packets that cause ‘Miss’ events deserve spe-
cial treatment. If left untreated, requests whose
responses are missed could cause the queue to

grow indefinitely. Therefore, if the DFA step
of the response results in ‘Miss’ event, we take
all the requests whose corresponding responses
were missed, out of the queue.

Table 4 shows the results after applying the
model with both splitting and synchronization
of requests and responses (using a queue) on
S7 traffic. The detected ‘Miss’ symbols are de-
picted in Figures: 6e and 6f. Trace #2 now
features 5.5 times fewer ‘Miss’ symbols and in
trace #3 we detect less than half of the ‘Miss’
symbols (compared to the detection after apply-
ing the model with splitting only).

6. CHALLENGES FOR THE
DFA-BASED MODEL

In general, we observed that the DFA-based
model is very effective on the S7 data we col-
lected. Table 4 shows that using PDU-splitting
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Table 4 Results after applying the DFA with both PDU-splitting and synchronization

Dataset AER Pattern # Normal # Unknown # Miss % Normal % Unknown % Miss

#2 All 180.24 198 305412 0 102 99.97 0.00 0.03
#3 Part 1 178.19 198 23163 0 3 99.99 0.00 0.01
#3 Part 2 370.20 406 389830 272 436 99.82 0.07 0.11

and synchronization over 98.82% of all traffic
was identified as ‘Normal’, i.e., the model has
very low ‘false positive’ rate over benign traf-
fic. Nonetheless we did observe two phenomena
that challenge the model and require additional
research.

6.1 Multiple Phases with Irregular
Periods Between Them

While in trace #2 we observed a homogeneous
periodic pattern, in trace #1 and trace #3 we
discovered multiple periods each with its own
distinct pattern. We call these distinct periods
phases. A phase transition is a change in the
control system that results in a transition from
one phase to another phase. Using the DFA
learned in one phase to enforce the model dur-
ing another phase results in very high anomaly
rates.

To automatically identify the phases, we used
the following method. In order to detect the
start of a phase, we define a Learn Threshold
(LT). If the performance of the model learning
stage is below LT, the learning is considered un-
successful. In that case the recording and a new
learning stage are restarted K symbols ahead of
the start symbol of the failed stage. As soon as
the learning stage succeeds, a beginning of a
new phase is marked.

In order to detect the end of a phase, we de-
fine several threshold metrics and an algorithm.
We define a Noise Miss Threshold (NMT) and
a Noise Unknown Threshold (NUT) to be the
rate (in terms of % AER) of ‘Miss’ and ‘Un-
known’ symbols respectively, in a specific time
frame. If the rate of ‘Miss’ symbols is more than
‘NMT’ or the rate of ‘Unknown’ symbols is more
than ‘NUT’, the time frame is considered noisy.
We define a Phase-End Check(PEC) Window as
a sliding window of S consecutive time frames,

during which we check for phase end. The Phase
End Threshold (PET) is defined as the number
of noisy time frames in the PEC Window that
triggers the detection of a phase end.

We used this method on our datasets with
time period = 0.5 seconds, with NMT = NUT
= 80% (i.e., a time frame with over 80% ‘Miss’
or ‘Unknown’ transitions is considered Noisy),
with PEC window of S = 8, and with PET = 3
Noisy time frames indicating a phase end.

Figure 7 demonstrates the two phases of trace
#3. Figure 7a shows the detected anomalies us-
ing a DFA that was learned at the beginning of
the trace. Figure 7b shows the detected anoma-
lies over the same trace with a DFA that was
learned at the beginning of the 2nd phase (start-
ing at time 155 sec.). Notice how each DFA
models its own phase well, but does poorly in
the other phase.

In our data, these phase changes correspond
to human operator actions. Approximately 2-
3 minutes after initiating the data capture, the
operator adjusted some settings in the ‘sewage
treatment process’ HMI. We believe that this
action caused a brief transitional phase in the
traffic, after which the HMI-PLC channel set-
tled into a new communication pattern, which
is modeled as the second phase. Barbosa et
al. (Barbosa et al., 2012) noticed similar phe-
nomena and related them to momentary in-
crease/decrease in the amount of variables re-
quested by a monitor and/or in the rate in
which the variables are requested.

We see that detecting the start and end of
a phase is fairly straight forward. However,
clearly each phase requires its own learning and
its own DFA. Learning and enforcing multiple
DFAs is a challenge for the approach, which we
leave for future work.
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(a) Trace#3-Prt1
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(b) Trace#3-Prt2

Figure 7 Multiple phases in the trace. Each time frame on the X axis represents 30 seconds. The
thin upper line indicates ‘Unknowns’, the thick lower line indicates ‘Miss’ transitions.

6.2 Simultaneous Slower Cycles

As shown in Table 3, trace #1 has a very low
‘Unknown’ rate (0.07%). However, unlike in
trace #3, the ‘Unknown’ symbols are not caused
by isolated operator actions.

All three phases of trace #1 have a periodic
pattern of ‘read’ requests and responses with a
period of T1 = 1 sec. However, in this trace we
observed a second periodic pattern of ‘write’ re-
quests and responses that is much slower, with a
period of T2=60 seconds. This periodic pattern
is visible by the repeating spikes of ‘Unknown’
symbols depicted in Figures 5a and 5b. A sim-
ilar phenomenon was observed by (Goldenberg
& Wool, 2013); the captured Modbus traffic had
3 periods: a 1-sec period, a 15-minute period,
and a 24-hour period. (Goldenberg & Wool,
2013) dealt with multi-period patterns using a
multi-level DFA. We have not yet addressed the
issue of multi-period traffic in S7. Having long
periods does pose a challenge for a DFA-based
IDS, since learning and enforcing long periods
(with thousands of symbols) is cumbersome and
error prone.

7. CONCLUSIONS AND
FUTURE WORK

In this paper we developed and applied a DFA-
based IDS to S7 traffic. Based on detailed anal-
ysis of captured traffic from two production ICS
plants we were able to reverse-engineer the key
semantics of the proprietary S7 protocol. We

then modified the earlier DFA model that was
developed for the simple Modbus protocol to
make it suitable to the rich data model and pro-
tocol semantics of S7.

Evaluating the resulting model on our cap-
tured traces we saw that, as in Modbus, the
DFA-based approach is very successful in mod-
eling benign S7 data with over 99.82% accuracy
and extremely low false positive rates. Further,
the IDS is extremly efficient: it keeps minimal
state during the enforcement stage, and can eas-
ily work at line-speed for real-time anomaly de-
tection.

We have also observed two phenomena that
challenge the approach and require further re-
search: operator actions that cause short term
un-modeled events and long term phase tran-
sitions, and channels with multiple (slow) peri-
ods. Additional research is also required to eval-
uate the approach’s effectiveness against mali-
cious traffic of various types.

Finally, note that the S7 PDU includes multi-
ple variable-length fields, with complex encoded
lengths. This structure offers many opportuni-
ties for buffer overflows in both the PLC and
HMI code. We did not attempt any fuzzing
against the devices in this work.
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