
1Lattices are Everywhere
Ram Zamir,

EE - Systems, Tel Aviv University, ISRAEL

zamir@eng.tau.ac.il

Abstract

As bees and crystals (and people selling oranges in the market) know it for many years, lattices provide

efficient structures for packing, covering, quantization and channel coding. In the recent years, interesting links

were found between lattices and coding schemes for multi-terminal networks. This tutorial paper covers close

to 20 years of my research in the area; of enjoying the beauty of lattice codes, and discovering their power in

dithered quantization, dirty paper coding, Wyner-Ziv DPCM, modulo-lattice modulation, distributed interference

cancelation, and more.

I. INTRODUCTION

Lattice codes form effective arrangements of points in space for various geometric and coding problems, e.g.,

sphere covering and packing, quantization, and signaling for the additive white Gaussian noise (AWGN) channel

[11], [21]. The effectiveness (as well as the complexity of the solution or the coding effort) usually increases with

the spatial dimension; good lattices tend to be “perfect” inall aspects as the dimension goes to infinity. However,

for a given dimension, the problems are not equivalent. Figures of merit like thickness, density, normalized second

moment (NSM) and volume-to-noise ratio (VNR), characterize how good a given lattice is with respect to each

of the various aspects.

Recent developments in the area of Gaussian network information theory generated new solutions based on

lattices, and hence new figures of merit [66], [18]. For example, for side-information problems known as the

“Wyner-Ziv” source and the “dirty-paper” channel, a nestedpair of lattices is needed where one component lattice

forms a good channel code while the other component lattice forms a good source code. For joint source-channel

coding problems, lattices with a good NSM-VNR product are desired [34].

We review these results, and re-examine the theory of lattice figures of merit in the context of multi-user

systems and linear Gaussian networks. We hope that this overview will motivate and guide future research on

efficient lattice codes construction.
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II. L ATTICES AND FIGURES OFMERIT

An n-dimensional latticeΛ is defined by a set ofn basis (column) vectorsg1, . . . ,gn in R
n. The latticeΛ is

composed of all integral combinations of the basis vectors,i.e.,

Λ =
{

ℓ = G · i : i ∈ Z
n
}

, (1)

whereZ = {0,±1,±2, . . .}, and then×n generator matrixG is given byG = [g1 |g2| . . . |gn ]. Note that the

zero vector is always a lattice point, and thatG is not unique for a givenΛ. See [11].

A few important notions are associated with a lattice, see [27], [30]. The nearest neighbor quantizerQ(·)
associated withΛ is defined by

Q(x) = ℓ ∈ Λ if ‖ x − ℓ ‖≤‖ x − ℓ′ ‖ ∀ ℓ′ ∈ Λ , (2)

where‖ · ‖ denotes Euclidean norm, and ties are broken in a systematic manner. The basic Voronoi cell ofΛ is

the set of points inRn closest to the zero codeword, i.e.,V0 = {x : Q(x) = 0} . The Voronoi cell associated

with eachℓ ∈ Λ is the set of pointsx such thatQ(x) = ℓ and it is given by a shift ofV0 by ℓ. The modulo-Λ

operation w.r.t. the lattice is defined as

xmodΛ = x − Q(x) (3)

which is also the quantization error ofx with respect toΛ.

The use of high dimensional lattice codes is justified by the existence of asymptotically “good” lattice codes.

Lattice “goodness” may take one of several forms [11], [21].Below we consider four such forms. It is interesting

to note that a lattice which is good in one sense need not necessarily be good in the other. Nevertheless, it is

shown in [15] that a sequence of lattices exists which is simultaneously good in all four aspects.

Packing problem:Consider a latticeΛ with Voronoi regionV. For a given radiusr the setΛ+rB is a packing

in Euclidean space if for all lattice pointsx,y ∈ Λ (x 6= y) we have

(x + rB) ∩ (y + rB) = ∅

whereB denotes the unit ball. That is, the spheres do not intersect.Define the packing radiusrpack
Λ of the lattice

by

rpack
Λ = sup{r : Λ + rB is a packing}. (4)

Note thatrpack
Λ is the radius of the largestn-dimensional ball contained in the Voronoi cellV0. Denote byreffec

Λ

the “effective radius” of the Voronoi region, meaning the radius of a sphere having the same volume, so that

reffec
Λ is defined by

VB(reffec
Λ ) = Vol(V)

△
= V (5)

whereVB(r) denotes the volume of a sphere of radiusr. Figure 1 gives the geometric picture ofrpack andreffec
Λ

with respect to the Voronoi region, as well as the other radiito be defined below. Define the packing efficiency
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Fig. 1: Geometric picture

ρpack of a latticeΛ by

ρpack(Λ) =
rpack
Λ

reffec
Λ

. (6)

We note that the packing efficiencyρpack(Λ) is by definition no greater than one. We wishρpack(Λ) to be as

large as possible. For a sequence of latticesΛn, the best known asymptotic lower bound forρpack(Λ) is equal

to 1
2 , a result known as the Minkowski-Hlawka theorem [53].

Covering problem:The associated notions for the covering problem are defined similarly to their packing

counterparts. The setΛ+ rB, composed of spheres centered around the lattice points, isa covering of Euclidean

space if

R
n ⊆ Λ + rB.

That is, each point in space is covered by at least one sphere.Define the covering radius of the latticercov
Λ by

rcov
Λ = min{r : Λ + rB is a covering}.

This is also the minimum radius of a ball containingV0. Define the covering efficiencyρcov(Λ) of a lattice by

ρcov(Λ) =
rcov
Λ

reffec
Λ

.

We note that the covering efficiencyρcov(Λ) is by definition not less than one. We wishρcov(Λ) to be as small

as possible. It is a result of Rogers [52] that there exist a sequence of lattices such thatρcov(Λn) → 1 asn → ∞.

This means that covering (in contrast to packing) may be asymptotically efficient, i.e., every point in space can

be covered (for a good lattice covering) by at most a sub-exponential number of spheres.

See standard textbooks on packing and covering such as Rogers [53] and Conway and Sloane [11].
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Mean-squared error (MSE) quantization:The second momentσ2

Λ of a lattice is defined as the second moment

per dimension of a uniform distribution overV,

σ2
Λ =

1

Vol(V)
· 1

n

∫

V
‖x‖2dx. (7)

A figure of merit of a lattice quantizer with respect to the MSEdistortion measure is the normalized second

moment (NSM)

G(Λ) =
σ2

V 2/n
. (8)

where V = Vol(V). The minimum possible value ofG(Λn) over all lattices inR
n is denoted byGn. The

normalized second moment of a sphere, denoted byG∗
n, approaches1

2πe as the dimensionn goes to infinity. The

isoperimetric inequality implies thatGn > G∗
n > 1

2πe for all n. We also haveGn ≤ G1 = 1
12 .

The operational significance of this figure of merit comes from classical results in high resolution quantization

theory; see e.g. [28]. A result due to Poltyrev in [64] statesthat

lim
n→∞

Gn =
1

2πe
(9)

i.e., that there exist a sequence of “good” lattice quantizers Λ∗
n such thatG(Λ∗

n) = Gn → 1
2πe . Another result in

[64] is that the quantization noise of a good lattice (e.g., alattice achievingGn) is “white”, i.e., the covariance

matrix of a uniform distribution overV is given byσ2
Λ · I, whereI is the identity matrix.

Coding for the unconstrained AWGN:The AWGN channel model is given by the input/output relation

Y = X + Z (10)

whereZ is i.i.d. Gaussian noise of varianceN . We denote byZ an i.i.d. vector of lengthn of noise random

variables.

The notion of lattices which are good for AWGN coding may be defined using Poltyrev’s [50] definition of

coding for theunconstrainedAWGN channel, allowing to separate the “granular” properties of the lattice as a

good channel code from the issue of shaping (to meet the powerconstarint). In this scenario any point of a lattice

may be transmitted, corresponding to infinite power and transmission rate. For a given lattice the ML decoder

will search for the lattice point that is nearest to the received vector. Therefore, the probability of decoding error

is the probability that the noise leaves the Voronoi region of the transmitted lattice point

Pe = Pr{Z /∈ V0}. (11)

The volume-to-noise ratio (VNR) of a lattice at probabilityof error Pe is defined as the dimensionless number

µ(Λ, Pe) =
V 2/n

N
, (12)

whereN is such that (11) is satisfied with equality [22].1 Note that for fixedPe, the VNR is invariant to scaling

of the lattice. The minimum possible value ofµ(Λ, Pe) over all lattices inR
n is denoted byµn(Pe). The VNR

1We omit the2πe from the original definition to keep the symmetry with the definition of the NSM.
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Fig. 2: Equivalent additive noise channel of the dithered lattice quantizer.

of a sphere, denotedµ∗
n(Pe), approaches2πe for any 1 > Pe > 0 as n → ∞.2 Furthermore, since a sphere

supports the isotropic vectorZ better than any shape of the same volume (see thesphere boundof [22]), we

haveµn(Pe) > µ∗
n(Pe) > 2πe, where the second inequality holds for all sufficiently small Pe. It follows from

Poltyrev (see also [21], [22], [15]) that

lim
n→∞

µn(Pe) = 2πe, for all 1 > Pe > 0. (13)

III. D ITHERED QUANTIZATION

In quantization theory (as well as in some non-linear processing systems) the term “dithering” corresponds to

intentional randomization, aimed to improve the perceptual effect of the quantization, e.g. to reduce “blockiness” in

picture coding. Dithered quantization is also an effectivemean to guarantee a desired distortion level, independent

of the source statistics.

Specifically, let the vectorZ be uniform over the fundamental Voronoi regionV0 of the lattice Λ, and

independent of the source. We say thatZ is “subtractive dither” if it is known at both the encoder andthe

decoder, and we reconstruct the source vectors asQΛ(s+Z)−Z. Addition and subtraction of a vectorz before

and after lattice quantization amounts to shifting the lattice quantizerQΛ(·) by the vector−z. Since the lattice

quantizer is periodic in space, a random uniform shift over the lattice period makes the quantization error uniform

as well.

Theorem 1. [64] The quantization errorQΛ(s+Z)−Z−s is uniform over−V0, the reflection of the fundamental

Voronoi regionV0, independent of the source vectors.

Equivalently,(s +Z) modΛ is uniform over−V0 for any s, a result termed “Crypto Lemma” by Forney [23].

As a corollary from Theorem 1 and (7), the mean squared distortion of the dithered quantizer is equal to the

lattice second moment:
1

n
E‖QΛ(s + Z) − Z − s‖2 = σ2

Λ (14)

independent of the source vectors.

2Note that by the Law of Large Numbers1
n
‖Z‖2 → PN as n → ∞, thus the typical set of the noiseZ coincides with a sphere of

radius
√

nPN , and therefore the NSM-VNR product for a sphereG∗

nµ∗

n(Pe) → 1.
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In high resolution quantization theory it is common to modelthe quantization process as adding (independent)

noise to the source [27]. While this is just an approximation(which holds under the assumption that the quantizer

cells are small compared to the variations in the source p.d.f.), Theorem 1 shows that for dithered quantization

the equivalent additive noisemodel, shown in Figure 2, is accurate atany resolution.

The next theorem makes the connection to an additive noise channel even stronger. Assume that for a given

source statistics, the lattice quantizer output is losslessly “entropy” coded, conditioned on the dither value. That

is, each lattice point is mapped into a binary word of variable length, such that the average code length is

approximately equal to the conditional entropy of the quantizer output

H(QΛ(S + Z)|Z) =
1

V

∫

V0

dz
∑

i

−pi(z) log pi(z) (15)

wherepi(z) =
∫

Vi
fS(x− z)dx is the probability that the source vector falls in theith cell of the shifted lattice.

If the source statistics are known a priori, then this entropy is achieved by making the binary word length close

to − log pi(z) [14]. Otherwise, there exist universal coding schemes (e.g., the Lempel-Ziv compression algorithm

and others) which can sequentially approach the entropy of any stationary and ergodic source [14]. We call such a

combination of a lattice quantizer and optimum lossless encoding an Entropy Coded Dithered Quantizer (ECDQ).

Theorem 2. [62] The rate of the ECDQ, i.e., the conditional entropy of the dithered lattice quantizer, is equal

to the mutual information in the equivalent additive noise channel of Figure 2:

H(QΛ(S + Z)|Z) = I(S;S − Z) (16)

whereI denoted mutual information [14].

The mutual information formula above resembles the expression for Shannon’s rate-distortion function:

R(D) = inf
Ŝ: E{d(S,Ŝ)}≤D

I(S; Ŝ) (17)

where the distortion measured can be, for example, squared errord(s, ŝ) = (s− ŝ)2. This function characterizes

the minimum achievable rate in lossy compression of a memoryless sourceS, and can be extended to sources

with memory [14]. The formal resemblance between the two formulas leads to auniversalbound on the loss of

the entropy-coded dithered lattice quantizer.

Theorem 3. [69], [62] For any sourceS, the redundancy of the ECDQ above the rate-distortion function under

a squared error distortion measure is at most

H(QΛ(S + Z)|Z) − R(D) ≤ 1

2
+

1

2
log(2πeG(Λ)) bit. (18)

See [62] for general difference distortion measures. Any “good” (squared-error) lattice quantizer satisfies

Lloyd’s centroid condition, [27], implying that the dithervector has zero mean. For such a lattice quantizer, the

second term in the right hand side above can be interpreted asthe divergence (or “Kullback-Leibler distance”)
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of the dither distribution from AWGN:

1

2
log(2πeG(Λ)) = D(Z‖Z∗) (19)

whereZ∗ is a zero-mean i.i.d. Gaussian vector with Var(Zi) = σ2
Λ for all i, and whereD(·‖·) denotes divergence

[14], [64].

Interestingly, the channel of Figure 2 could realize the rate-distortion function (17) of any continuous source

in the limit of high resolution quantization (D → 0), if the dither Z was replaced by Gaussian noise [4].

The divergenceD(Z‖Z∗) measures the information distance of the dither from being Gaussian. Thus, at high

resolution conditions, we can obtain a tighter characterization for the rate loss of the ECDQ.

Theorem 4. For any continuous sourceS (i.e., a source with a p.d.f.), the redundancy of the ECDQ above the

rate-distortion function under squared-error distortionmeasure satisfies

lim
D→0

H(QΛ(S + Z)|Z) − R(D) =
1

2
log(2πeG(Λ)). (20)

Note that this rate loss is half a bit smaller than the universal bound of Theorem 3, which holds at any

quantization resolution.

To close the discussion of universal quantization, we recall from the previous section that for a sequence of

lattices (Λ∗
n ∈ Rn) which are good for quantization,limn→∞ G(Λ∗

n) = 1
2πe . Thus, for such lattices the divergence

of the dither from Gaussianity (19) is going to zero. As a consequence, the bounds above on the redundancy of

the ECDQ go to half a bit - at general resolution, and to zero - at high resolution.

Note that the redundancy of the best lossy compression scheme goes to zero with the dimension likelog(n)/n,

which is the same asymptotic behavior aslog(2πeGn). See [63]. Does the latticeΛ∗
n represent the best arrangement

of code points atany finite dimensionn? This is, in fact, an open question at high-resolution vector quantization

theory.

A. Filtered ECDQ: the “test-channel simulator”

Consider the equivalent additive noise channel model in Figure 2. If the second order statistics of the source

are known, then we can use Wiener linear estimation principles to reduce the overall MSE in reconstructing the

sourceS. The improvement is most dramatic when the source is Gaussian.

Note first that following the discussion in Section II, the dither vector of an optimum (squared-error) lattice

quantizer is “white”, i.e., the dither components are uncorrelated and have equal variance. Thus, the noise in

the equivalent ECDQ channel of Figure 2 is white, although not quite Gaussian (unless forΛ∗
n asn → ∞). If

also the source is white (i.e., memoryless), then the Wienerfilter is a simple scalar coefficientβ at the output

of the equivalent channel, [23]. For such a source the reconstruction becomeŝS = β[QΛ(S + Z) − Z], where

β =
σ2

S

σ2
S+σ2

Λ
, and the overall distortionD = E‖Ŝ− S‖2 decreases fromσ2

Λ to D =
σ2

Sσ2
Λ

σ2
S+σ2

Λ
. If we further assume
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that the source is Gaussian,S∗ ∼ N(0, σ2

S), then the rate-distortion function (17) becomes

R∗(D) =
1

2
log

(

σ2
S

D

)

0 < D ≤ σ2
S. (21)

On the other hand, the mutual information in (16) can be written as a difference of differential entropiesI(S∗;S∗−
Z) = h(S∗ −Z)− h(Z), where the first term is bounded by the Gaussian entropy (corresponding to variance of

σ2
S + σ2

Λ), while the second term is a uniform entropy, which in view of(8) is equal to

h(Z) = log(V ) =
1

2
log

(

σ2
Λ

G(Λ)

)

(22)

whereV is the lattice cell volume. Combining together, it follows that the redundancy of the ECDQ above (21)

is at most

H(QΛ(S∗ + Z)|Z) − R∗(D) ≤ 1

2
log(2πeG(Λ)) , (23)

now not only for small but forall distortion levels. See the proof in [63], where it is also shown that for a

non-Gaussiansource, the rate loss of the “Wiener filtered” ECDQ increasesby at mostD(S‖S∗), the divergence

of the source from Gaussianity.

We can write the output coefficient directly in terms of the target distortion as

β = 1 − D

σ2
S

, (24)

and the lattice second moment is then chosen asσ2
Λ = D/β. We observe thatβ is smaller than one for all the

range0 < D ≤ σ2
S. Thus, interestingly, the reproduction latticeβΛ is a “deflated” version of the encoding lattice

Λ. More on the meaning of that - in the next chapter.

To extend this concept to a source withmemory, we shall first need to assume that the entropy coding is

done jointly, to take advantage of the dependence between consecutive outputs of the lattice quantizer.3 This is

equivalent to conditioning the probabilitiespi(z) in (15) on past outputs of the lattice quantizer. An extension of

Theorem 2 above shows that the resultingentropy rate, denotedH̄, is equal to themutual information rateof

the source over the equivalent additive noise channel:

H̄(QΛ(S + Z)|Z) = Ī(S;S − Z). (25)

Now, recall that the rate-distortion function of a general stationary Gaussian source, with power spectrum

S(ej2πf ), is given by the “water-pouring” parametric equations [4],[14]:

R(D) =

∫ 1/2

−1/2

1

2
log

(

S(ej2πf )

D(ej2πf )

)

df

=

∫

f :S(ej2πf )>θ

1

2
log

(

S(ej2πf )

θ

)

df (26)

3We shall see a linear prediction approach later, in Section VI.
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Fig. 3: The water filling solution.

where thedistortion spectrumis given by (See Figure 3)

D(ej2πf ) =







θ, if S(ej2πf ) > θ

S(ej2πf ), otherwise,
(27)

and where we choose thewater levelparameterθ so that the total distortion isD:

D =

∫ 1/2

−1/2
D(ej2πf )df. (28)

This function is realized by the “forward test-channel realization” [4]

Yn = h2,n ∗ (h1,n ∗ Xn + Nn) (29)

whereNn ∼ N(0, θ) is AWGN with θ = θ(D) = the water level,∗ denotes convolution, andh1,n andh2,n are

the impulse responses of a pre-filter and a post-filter, respectively, whose absolute squared frequency responses

are given by

|H1(e
j2πf )|2 = |H2(e

j2πf )|2 = 1 − D(ej2πf )

S(ej2πf )
(30)

and their phase responses are chosen so thatH2(e
j2πf ) = H∗

1 (ej2πf ) . Since as we saw above the ECDQ

simulates, in an information sense, an additive channel with noise−Z, we can combine the same pre- and

post-filters as in (30) with the ECDQ, where entropy-coding is done sequentially over consecutive outputs of

the lattice quantizer. Since the system is linear, the resulting MSE would be the same as if the noise−Z was

white Gaussian (as in the forward test channel realization), while the mutual information rate would increase

by at most the divergenceD(Z‖Z∗). Thus, the resulting scheme achieves the R-D function (26) -(28) up-to

D(Z‖Z∗) = 1
2 log(2πeG(Λ)).

Note that if the source spectrum is bounded away from zero, then in the limit of high resolution (D ≪
minf S(ej2πf )) the pre and post filters degenerate, and can be replaced by shortcuts. Note also that in the

memoryless source case, the system reduces to a scalar form which is equivalent to the one discussed in the

beginning of this section: the source is first multiplied by
√

β, then quantized with a lattice withσ2
Λ = D, and

then multiplied again by
√

β for reproduction.

As a final conclusion, if we use lattices from the sequenceΛ∗
n (lattices which are “good” for quantization),

then the rate loss vanishes in the limit as the lattice dimension goes to infinity.
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Theorem 5. [63] For any stationary Gaussian source, the entropy rate of the pre/post filtered ECDQ system

satisfies

H̄(QΛ∗

n
(S∗

pre + Z)|Z) → R∗(D) as n → ∞ (31)

whereS∗
pre denotes the pre-filtered source andD is the overall distortion.

IV. V ORONOI CODEBOOKS

As information theory shows us, Gaussian sources and channels should be encoded using “Gaussian code-

books”. That is, the codewords should be selected from a Gaussian generating distribution. The number of

codewords is determined by the target rate, while the generating distribution is white, and its variance is equal to

the source variance - in source coding, and to the transmitter power - in channel coding.4 The resulting codebook

in Rn (n being the code dimension) has a Gaussian - or equivalently, aspherical- shape, with roughly evenly

spaced points as codewords. Can we replace a Gaussian codebook by a lattice code?

In the ECDQ system discussed above, the codebook was the whole (unbounded) lattice andnot shapedto fit

the source variance. The lack of shaping is compensated for by entropy coding, which amounts to “soft” shaping:

the lattice points which fall inside the typical (spherical) source region get a shorter binary representation, and

dominate the coding rate, while the contribution of the points outside this region is negligible. A similar situation

occurs in un-constrained channel coding [50]. In fixed-length source coding or power-constrained channel coding,

however, the codebook must be bounded.

In this Chapter we show how to construct a lattice codebook, that is rate-distortion / capacity achieving

for Gaussian sources / channels, and whose codewords and shaping region both have a lattice structure. Our

construction is based on the notion of nested lattices, which have its roots in De-Buda’s spherical lattice codes

[6] and Forney’s Voronoi constellations [20], [21], and oweits development to the search for structured binning

schemes for side information problems; see the next Chapter.

A. Nested Lattices

We introduce a “double lattice” construction which provides a structured solution for side-information problems

[66], [16], [18]. A pair of n-dimensional lattices(Λ1, Λ2) is called nested ifΛ2 ⊂ Λ1, i.e., there exists

corresponding generator matricesG1 andG2, such that

G2 = G1 · J ,

whereJ is ann × n integer matrix whose determinant is greater than one. The volumes of the Voronoi cells of

Λ1 andΛ2 satisfy

V2 = det{J} · V1 (32)

4If the source, or the “power spectral density mask” of the transmitter output, are colored, then the generating distribution must be

colored too.



11

  8

   2
3

1

4

5

2

1

6

   9

  2

 7

1

Fig. 4: Nested lattices: special case of self similar lattices.

whereV2 = Vol (V0,2) andV1 = Vol (V0,1). We call n
√

det {J} = n
√

V2/V1 the nesting ratio.

Figure 4 shows nested hexagonal lattices withJ = 3 · I, whereI is the 2 × 2 identify matrix. This is an

example of the important special case ofself similar lattices, whereΛ2 is a scaled – and possibly rotated –

version ofΛ1 [10].

The points of the set

Λ1 modΛ2
△
= Λ1 ∩ V0,2 (33)

are called thecoset leadersof Λ2 relative toΛ1; for eachv ∈ {Λ1 mod Λ2} the shifted latticeΛ2,v = v +Λ2 is

called acosetof Λ2 relative toΛ1. Mapping of border points in (33) (i.e., points ofΛ1 who fall on the envelop of

the Voronoi regionV0,2) to the coset leader set is done in a systematic fashion, so that the cosetsΛ2,v , v ∈ {Λ1

mod Λ2} are disjoint. It follows that there areV2/V1 = det{J} different cosets. Enumeration of the cosets can

be obtained using a parity-check-like matrix [11]. See alsothe formulation of Voronoi constellations [19], [20].

Good nested lattices:The existence of a sequence of good pairs of nested lattices,where one of the lattices

(the fine one or the coarse one) is good for AWGN channel coding, while the other lattice is good for source

coding under mean squared distortion, is addressed by Erezet al in [15]. The key to proving the existence of

such lattices is to consider an appropriateensembleof lattices. Such an ensemble was defined in the seminal

work of Loeliger [41] who also demonstrated how random coding arguments can be used to establish “goodness”

properties for most members of the lattice ensemble.

B. MMSE Estimation and Lattice Inflation

A dithered Voronoi codebookconsists of all shifted fine lattice pointsℓ ∈ u+ Λ1 inside the Voronoi region of

the coarse latticeΛ2, i.e.,

(u + Λ1) modΛ2 (34)



12
where the ditheru is an arbitrary vector inRn to be specified later. (Foru = 0 this is the set of relative coset

leaders in (33).) The size of this codebbok isV2/V1 (independent ofu), so the associated coding rate is

R = 1/n log2(V2/V1)

bit per dimension.

If we use this codebook for Gaussian source coding, then the fine lattice should be a “good quantizer”. The

coarse lattice, on the other hand, should minimize the cell volumeV2 (for best compression performance) while

keeping theoverload probability[32] (the probability a source vector falls outside the Voronoi regionV0,2) low.

This means that the coarse lattice should act like a “good AWGN channel code”.

If we use this codebook for AWGN channel coding, i.e., as a Voronoi constellation [20], then the roles are

reversed. The fine lattice should be a “good AWGN channel code”, while the coarse lattice should maximize

the cell volumeV2 (for maximum capacity) while keeping the transmit power constraint. Thus the coarse lattice

should act as a “good quantizer”.

If both component lattices are good, i.e., with NSM→ 1/2πe and VNR→ 2πe as the lattice dimension goes

to infinity, then the coding rate is roughly given by

R ≈ 1

2
log2

(

σ2
Λ2

σ2
Λ1

)

.

This rate, however, corresponds to some rate loss in both problems of interest. Specifically, for an AWGN channel

with noise powerN and power constraintP , we getR ≈ 1/2 log(P/N), i.e., loss of “1” inside thelog with

respect to the AWGN channel capacity

C =
1

2
log

(

1 +
P

N

)

. (35)

For a Gaussian source with varianceσ2
S encoded at distortion levelD, we getR ≈ 1/2 log((σ2

S +D)/D), because

(as we saw in the previous chapter for dithered quantization) the variance of the quantizer output is equal to the

source variance plus the second moment of the (fine) lattice (which is equal toD). Thus we get an extra “1”

inside thelog, corresponding to some rate redundancy above the QG rate-distortion function (21).

Note that from an information theoretic point of view, theserate losses can be avoided by using joint-typicality

arguments in the decoding/quantizing operations. However, this means breaking away with the lattice partition

structure of the decision cells5, hence increasing the decoding/quantizing complexity.

We shall show below that by combining dithering and linear operations, it is possible to achieve capacity and

rate-distortion function while still preserving the lattice structure at the encoding and decoding stages. We already

used this technique in the filtered ECDQ system of Section III-A. There, linear processing amounted to minimum

mean-squared error (MMSE) estimation while dithering was responsible for de-correlating the signal from the

5Vectors outside the codebook shaping region must be projected onto the surface of the region rather than quantized to thenearest

lattice point.
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quantization error. Here we shall give this technique also the interpretation oflattice inflation. In particular, we

shall use the identities

[αY ] modΛ = α
[

Y mod
Λ

α

]

(36)

and

QΛ(βS) = β QΛ

β

(S), (37)

which imply that scaling down / up a vector before a modulo lattice operation or quantization, is equivalent to

taking the modulo or the quantization operations with respect to a scaled-up / -down version of the lattice.

C. Achieving the AWGN Channel Capacity

Consider the AWGN channelY = X +Z of (10). Let the ditherU be uniform over the coarse lattice cellV0,2,

and letv be any codeword inΛ1 modΛ2. To transmit the messagev, the encoder outputsX = (v +U) modΛ2.

By (14) we have thatE{‖X‖2} = σ2
Λ2

, thus if we chose a lattice with second momentσ2
Λ2

= P , then each

codeword satisfies the power constraint (on the average withrespect to the dither). At the decoder we calculate

the “decision vector”

Ỹ = [αY − U] modΛ2 (38)

(whereα is a coefficient to be determined later), and decode to the nearest codeword, i.e.,̂V = QΛ1
(Ỹ). By the

identities (36) - (37) above, this is equivalent to

V̂ = QΛ1
α

([

Y − U

α

]

mod
Λ2

α

)

, (39)

i.e., to decoding with respect to theinflated codebookΛ1

α modΛ2

α . The equivalent channel from the codewordv

to the decision vector

Ỹ = [α(v + UmodΛ2 + N) − U] modΛ2 (40)

is called amodulo-lattice transformation[16]. The distributive law of the modulo operation implies:

Lemma 1. (Effective modulo-Λ additive noise channel) [16] The channel fromv to Ỹ is equivalent in

distribution to the modulo additive noise channel

Ỹ =
(

v + [αN + (α − 1)U ′]
)

modΛ2 (41)

whereU′ is uniform overV0,2 and independent ofv and N .

Theeffective (additive) noiseNeff = [αN+(α−1)U ′] modΛ2 is a weighted combination of two components:

AWGN and a dither component called “self noise” because it comes from the coarse lattice. For a modulo additive

noise channel a uniform inputV ∼ Unif(V0,2) maximizes the mutual informationI(V; Ỹ), which becomes

log(V2) − h(Neff ).
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The optimumα from a mutual-information viewpoint is the one that minimizes the entropy of the effective

noise [23]. As the lattice dimension increases, the ditherU ′ and therefore the effective noiseNeff become

closer to a Gaussian distribution (in the divergence sense (19)), in which case minimizing entropy amounts

to minimizing variance. Having this asymptote in mind, the information-wise optimumα becomes the Wiener

coefficientα =
σ2

Λ2

σ2
Λ2

+σ2
N

= P
P+σ2

N

, and the resulting noise variance is the MMSE solution

Var(Neff ) =
Pσ2

N

P + σ2
N

. (42)

We want to approach the corresponding mutual information using the nested lattice code described above. Note

that by the modulo-additivity of the equivalent channel, the error probability is identical for all codewords and

is equal to

Pe = Pr{Neff 6∈ V0,1}. (43)

Thus, by the definition of the the VNR (12), if we target somePe the volume of the fine lattice cell must

be V1 = [µ(Λ1, Pe) · Var(Neff )]n/2 or larger (where we assumed GaussianNeff , which is true for high SNR

(implying α = 1), or high dimension and “good” lattice to make the self-noise component “Gaussian enough”).

On the other hand, the power constraint implies that the volume of the coarse cell isV2 = [P/G(Λ2)]
n/2 or

smaller. For the MMSE solution (42), we thus get a coding rateof

R =
1

n
log

(

V2

V1

)

=
1

2
log

(

P/G(Λ2)

µ(Λ1, Pe)Var(Neff )

)

(44)

= C − 1

2
log
(

G(Λ2) · µ(Λ1, Pe)
)

(45)

whereC is the AWGN channel capacity (35).

If we now assume a sequence of good nested lattice pairs whereG(Λ2) → 1/2πe andµ(Λ1, Pe) → 2πe, then

the system approaches the AWGN channel capacity. An analysis of the error exponent of Voronoi codebooks can

be found in [40].

D. Achieving the QG Rate-Distortion Function

To encode the sourceS using a Voronoi codebookΛ1 modΛ2, we first quantize a scaled dithered version of

the source using the fine lattice, and then send an index identifying the codeword modulo the coarse lattice. At

the decoder, we subtract the dither to obtain the reconstructed vector

Ŝ = QΛ1
(βS + U) modΛ2 − U (46)

where the ditherU is uniform over the fine cellV0,1. By the identities (36)-(37) above, this procedure is equivalent

to

Ŝ = β
[

QΛ1
β

(S + Ũ) mod
Λ2

β
− Ũ

]

(47)

whereŨ = U/β, i.e., to encoding with respect to theinflated codebookΛ1

β modΛ2

β and then re-scaling.
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Note that if we ignore the shaping byΛ2, then the second form (47) is the same as the “filtered ECDQ”

scheme of Section III-A. We can thus take the coefficientβ = 1 − D/σ2
S as in (24), and set the fine lattice

second moment toσ2
Λ1

= βD (or equivalently the second moment of the inflated fine lattice to beD/β). This

guarantees that the resulting reconstruction mean-squared error1/nE‖Ŝ − S‖2 would beD. The choice of the

coarse lattice determines the coding rateR = 1/n log(V2/V1) and the overload probability

Pe = Pr
{

QΛ1
(βS + U) 6∈ V0,2

}

≤ Pr
{

βS − U′ 6∈ V0,2

}

(48)

where the upper bound follows by taking a modΛ2 operation also at the decoder (which can only make the

overload probability worse), and then applying Theorem 1. To guarantee some targetPe, we adjust the coarse

lattice to the variance of the equivalent sourceβS− U′ which for β andσ2
Λ1

above isσ2
S − D. Specifically we

chooseV2 = [µ(Λ2, Pe) · (σ2
S − D)]n/2. And sinceV1 = [βD/G(Λ1)]

n/2, we get

R =
1

2
log

(

µ(Λ2, Pe) · σ2
S

D/G(Λ1)

)

(49)

thus we achieve the rate distortion function (21) up to a redundancy term of

Redundancy =
1

2
log
(

µ(Λ2, Pe) · G(Λ1)
)

bit per sample. (50)

As discussed above, we can find a sequence of pairs of nested lattices such thatµ(Λ2,n, Pe) → 2πe andG(Λ1,n) →
1/2πe, asn → ∞. Thus using large dimensional lattices we can make the redundancy term as small as desired.

Thus again the NSM-VNR cross product of the lattice pair (with the roles ofΛ1 and Λ2 switched relative to

(45)) determines the rate loss of the system.

V. SIDE-INFORMATION PROBLEMS

Classical information theory deals with point-to-point communication, where a single source is transmitted

over a channel to a single destination. In a distributed situation there may be more than one (possibly correlated)

sources, hence more than one encoder, and/or more destinations, hence more than one channel output and decoder.

The simplest situation, which captures much of the essence in the problem, are sources and channels with side

information.

In the source version of the problem - solved by Wyner and Ziv [59] - a sourceS is encoded knowing that

a correlated signalJ is available non-causally at the decoder (but not at the encoder). In the Gaussian case, we

assume thatS = J + Q, whereQ is a white Gaussian source independent ofJ .

The channel version of the problem was solved by Gelfand and Pinsker in [26]. Here a state-dependent channel

is encoded knowing the channel states non-casually, however decoding is done solely from the channel output

without having access to the channel states. In the special case known as the “dirty paper” channel, the input-

output relation isY = X + I + Z, whereI, the interference, is known at the encoder but not at the decoder, and

Z (the unknown noise) is AWGN [13].
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An interesting feature of the Gaussian side-information problems is that their information theoretic solution

amounts to complete elimination of the effect of the known parts J and I. Below we show that the lattice

encoding and decoding schemes of Section IV give us almost “for free” a simple structured solution for these

two Gaussian side-information problems.

A. Lattice Wyner-Ziv Coding

The Wyner-Ziv function of the sourceS = J +Q, with J known at the decoder, at MSE distortion levelD, is

given by0.5 log(σ2
Q/D). See [14]. To approach this optimum performance, we use a dithered Voronoi codebook

based on a nested lattice pair(Λ2 ∈ Λ1), as in Section IV. The encoder is identical to that in SectionIV, with the

lattices tuned according to the variance of the unknown source partQ and the distortion levelD. The decoder

subtracts the known partJ (properly scaled) prior to the modulo lattice operation, and adds it back after the post

scaling byβ. The final system is shown in Figure 5.

Like in Section IV, the distributive law of the modulo operation implies that the mapping betweenS, J and

Ŝ is equivalent to the channel in Figure 6. Note that the effectof the J component is removed prior to the

equivalent modulo operation. Thus, for “correct decoding”, we are left with the same condition as in the no

side-information case (48)-(49), only now with respect just to the unknown part of the sourceQ. It follows that

after adding the side information, the overall distortion in S is D, as desired. Furthermore, the coding rateR is

equal to the WZ function0.5 log(σ2
Q/D), up to a loss factor12 log (G(Λ1) · µ(Λ2, Pe)), as in (50). Thus, for a

sequence of good nested lattice pairs (G → 1/2πe, µ → 2πe) the system becomes optimal.

It is interesting to compare the lattice-WZ system to the standard “random binning” technique [14]. Note that

all source vectorss which are associated with the same fine lattice point modulo the coarse lattice (i.e., with

QΛ1
(s+u) modΛ2 = ℓ for someℓ ∈ Λ1 modΛ2) are mapped to the same channel index. Hence, in the lattice-WZ

system, a “bin” is equivalent to a coset ofΛ1 relative toΛ2, as defined in Section IV-A. Unlike random bins, all

such cosets are equivalent, i.e., identical in size and in average distortion. Furthermore, we don’t need to make

any statistical assumptions regarding the side information signal.

B. Lattice Dirty-Paper Coding

Very similar ideas apply to the dirty-paper channel

Y = X + I + Z,

where the interferenceI is known at the encoder, the unknown noiseZ is Gaussian with varianceN , and the

encoder satisfies the power constraintP . We use a pair of nested lattices, with the roles of quantization (here

in the sense of shaping) and channel coding reversed: the coarse lattice satisfiesσ2
Λ2

= P , while the fine lattice

satisfiesPr{Z /∈ V0,1} < Pe for sufficiently small decoding error probabilityPe. The full description of the lattice
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Fig. 6: Equivalent channel for the scheme of Figure 5.

DPC scheme can be found in [66] (also [16]). For the high signal-to-noise (SNR) case the analysis simplifies,

and the resulting coding rate (which like above it is the logarithm of the nesting ratio) becomes

1

2
log

(

P/G(Λ2)

µ(Λ1, Pe) · σ2
z

)

≈ C − 1

2
log
(

G(Λ2) · µ(Λ1, Pe)
)

(51)

whereC = 1
2 log

(

1 + P
N

)

denotes the AWGN channel capacity. We see again that in orderto make the capacity

loss term small, we need nested lattices with a small cross NSM-VNR product, but in reversed order w.r.t. the

Wyner-Ziv problem above.

More delicate analysis and lattice properties are requiredat thenon- high SNR regime; see e.g. [40] for the

error exponent in lattice decoding.

VI. WAVEFORM SOURCES ANDCHANNELS

We shall now apply the lattice coding techniques developed so far to the efficient encoding of signals and

channels with memory. One of the interesting observations we shall make is that memory can be treated as

“side-information”. This gives rise to “reversed” forms ofcommon prediction and equalization techniques in

source and channel coding.

A. Predictive Quantization and Wyner-Ziv DPCM

Linear prediction is an effective mean to exploit memory in source coding. In differential pulse code modulation

(DPCM), [32], the current source sample is predicted from the past reconstruction - a procedure calledbackward
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prediction- and the prediction error is encoded by a simple scalar quantizer. The error reduction due to prediction

translates into rate saving for the same distortion in quantization. Can we replace the complexsequenceentropy

coding in the ECDQ of Section III-A by linear prediction followed byper-samplequantization?

The “predictive test channel” of Figure 7 provides a first step towards this goal. This channel has the same

pre- and post-filters (30) as in the forward channel realization of Section III-A, while the inner AWGN channel

was replaced by a sequential block:

Jn = f(Vn−1, Vn−2, . . . , Vn−L) (52)

Qn = Un − Jn (53)

Qqn = Qn + Nn (54)

Vn = Jn + Qqn. (55)

whereNn ∼ N (0, θ) is i.i.d. andθ = θ(D) is the “water level” parameter (26).

Theorem 6. [67] The system of Figure 7, satisfies

E(Yn − Xn)2 = D. (56)

Furthermore, if the sourceXn is Gaussian andf = f(V −
n ) is the optimum infinite order predictor then

I(Qn;Qn + Nn) = R(D). (57)

Thus, thescalarmutual information over the channel (54) is equal to the RDF (26) - (28).

The next step is to replace the AWGN channel inside the prediction loop by a Voronoi codebook (as in

Section IV-D) or a lattice ECDQ (as in Section III). These coding schemes approximate the information-distortion

performance of the channelQqn = Qn + Nn, up-to a rate loss of12 log (G(Λ1) · µ(Λ2, Pe)) (for a Voronoi

codebook), or12 log (2πeG(Λ)) (for a lattice ECDQ). The combination of the encoder section(from Sn to the

codeword associated withQqn) and the decoder section (mapping back toQqn and then toŜn) results in a

lattice-DPCM system.

At first sight, however, the dimensionality of the lattice codebook seems to be in conflict with the temporal

sequentiality of the system. Nevertheless, it is shown in [67] (see [29]) how to use then dimensional lattice over
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a virtual “spatial” dimension, by encoding in paralleln different sources orn interleaved long segments of the

same source.

Finally, we can view the predicted processJn as side information which is available at the decoder [57]. We

can thus use the lattice-WZ system to encode the filtered source Un, avoiding the prediction at the encoder all

together. This “Wyner-Ziv DPCM” system is shown in Figure 8.

B. Decision Feedback Equalization (DFE) and Lattice Pre-coding

The same ideas can be used to extend the Voronoi lattice coding scheme of Section IV-C to channels with

inter-symbol interference (ISI). The channel model is likethe interference channel of Section V-B, only here the

interference signal is a linear combination of previous channel inputs

In =

∞
∑

i=1

hiXi.

As shown by Cioffiet al, [9], if we assume that the receiver decides correctly on previous channel inputs (correct

decoding), then the equivalent ISI at the receiver input canbe canceled perfectly, implying that thescalar

mutual information over the decision device (“slicer”) coincides with the mutual-information-rate over the entire

channel. If the input spectrum is capacity achieving, then so is the scalar mutual information at the slicer. Like

for colored sources above, a Voronoi codebook can be used, with a lattice decoder (quantizer) as a slicing device,

to approach this scalar (Gaussian) mutual information, up-to a loss term of12 log (G(Λ2) · µ(Λ1, Pe)).6 Again,

to allow sequential operation, the lattice is encoded over avirtual “spatial” dimension ofn parallel channels,

generated by interleaving long channel segments. See [29],[67].

Finally, we can transfer the channel interference compensation from the decoder to the encoder, by viewing

the ISI termIn above as side information known to the encoder. We can then use the lattice DPC system of

Section V-B to cancel the interference at the encoder. The resulting system, illustrated in Figure 9, provides a

lattice form of the well known Tomlinson-Harashima pre-coder [9], [66], [47].

6Since the equivalent slicer channel is areversedAWGN channel [67], the theoretically achievable rate is half the logarithm of the

SNR at the slicer input (i.e., with no additional “1” inside the logarithm [9]).
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VII. M ODULO-LATTICE MODULATION

So far we discussed either source or channel coding problems. In this section we address the combination of

the two. We shall present a “semi-analog” joint source-channel modulation technique, which is based on lattice

codes. This technique - called “modulo-lattice modulation” (MLM) - enjoys the benefits of both analog and

digital communication. It is robust to channel uncertaintyand saves complexity - similar to analog modulation,

yet it optimally matches sources and channels of general bandwidth and spectra - like in digital communication.

See [34], [33].

The presentation starts with an analog version of the lattice side-information schemes of Section V, which

forms the basis for the joint source-channel lattice modulation scheme.

A. Joint WZ/DPC Lattice Coding

Suppose that the composite sourceS = J + Q of Section V-A needs to be transmitted over the power-

constrained interference channelY = X + I + Z of Section V-B. Like in these two Sections, suppose that the

decoder knows theJ component of the source, while the encoder knows theI component (“interference”) of the

channel noise. TheI andJ signals are known non-causally.

We can merge the two systems of Sections V-A and V-B to construct a joint-source channel modulation

scheme, as shown in Figure 10. This MLM scheme consists of only one lattice - the former coarse lattice of the

WZ/DPC schemes - which is used to take account of the side-information signalsI andJ . The fine quantization

lattice of the WZ system, and the fine lattice codebook of the DPC system, are replaced by direct mapping of

the (scaled) source vector to the channel input. Thus, in a sense, we saved the complexity of 3 out the 4 lattices
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in a full digital implementation, where a lattice WZ system is concatenated with a lattice DPC system.

How good is this combined system? Since the separation principle holds in this setting [43], it follows by

combining the QG WZ-RD function1/2 log(σ2
Q/D) and the DPC channel capacity1/2 log(1 + SNR) (where

SNR = P/N ), that the minimum theoretically attainable distortion (OPTA) is

Dopt =
σ2

Q

1 + SNR
(58)

Note that thisDopt is independent of the power of the interferenceI as well as of the variance of the known

part of the sourceJ . Hence (settingI = J = 0), it is the same as if the unknown source partQ was transmitted

over a zero-interference AWGN channelY = X +Z. To compare that with the performance of the MLM system

of Figure 10, we first use the modulo distributive law to arrive at an equivalent channel with a single modulo

operation. See [34]. It can be verified that the signal at the input of the equivalent modulo lattice operation

is Y ′′ = βQ + Zeq, whereZeq = αZ + (α − 1)U , and U denotes the dither. The variance of this (nearly

Gaussian) signal determines the size of the coarse lattice cell. Thus, as shown in [34], if we follow the analysis

of Sections V-A and V-B, we obtain the distortion

D = Dopt · µ(Λ, Pe) · G(Λ) (59)

wherePe is the overload probability as in (43). That is, we suffer a distortion amplification equal to the NSM-

VNR product of the lattice - an interesting new figure of merit- provided an overload event did not occur. Thus, if

we use lattices with a small NSM-VNR product (i.e.,G(Λ) → 1/2πe andµ(Λ, Pe) → 2πe), then asymptotically

for large dimension the non-overload distortion (59) arbitrarily approaches the OPTA of (58). Furthermore, for

such lattices the contribution of the overload distortion can be made negligible [34].

The system above is not only asymptotically optimal (for large lattice dimension), but unlike in a digital

solution, it is robust to the accuracy of knowing the signal-to-noise ratio SNR=P/N at the encoder, provided the

SNR is high. Specifically, if we know in advance that the true SNR is greater than some minimum levelγ0, and

tune the encoder parameterβ to that value, then the decoder can reconstruct at distortion level which is bounded

above by

D ≤
σ2

Q

SNR

γ0

γ0 − 1
. (60)

This is only slightly worse than the optimum (58) providedγ0 is sufficiently large. This is in contrast to the

digital solution in this situation, where the distortionDdigital = σ2
Q/(1 + γ0) is fixed for all SNR ≥ γ0, i.e.,

determined solely by the minimum SNR and does not improve if the SNR gets better.

Bandwidth Expansion:The MLM system can be used for “bandwidth expansion” - that is, there is no source

or channel side-information, but there areρ channel uses per each source sample,ρ being an integer. Suppose,

first, MLM with a scalar lattice (n = 1). The first channel inputX1 is the source sampleS, scaled to match the

input power constraint Then, the received signalY1 = βS + Z is considered as side-information “J” known to

the decoder, andS is transmitted again, now using the MLM principle. (Note that we can always writeS as
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the source memory component, subtracted and then added again using the source predictor.

αY1 +Q2, whereαY1 is the MMSE estimate ofS, andQ2 is the estimation error which is is independent ofY1.)

This “zooming” procedure is repeatedρ−1 times, where every time the previous received samples are considered

as side-information [7], [51]. In the generaln-dimensional lattice case, the firstn-vector input is a scaled version

of the source vector, and in each of theρ − 1 iterations the source vector is WZ-encoded treating the previous

received vectors as side information. As the lattice dimension goes to infinity, the distortion approaches

D =
σ2

S

(1 + P/N)ρ
(61)

which is the OPTA in this case [51].

In the next section we present a general framework for matching sources and channels of arbitrary bandwidth

and spectra using MLM.

B. Analog Matching of Colored Sources and Channels

Suppose a stationary Gaussian source with an arbitrary spectrum needs to be transmitted over a Gaussian

channel with an arbitrary noise spectrum, or equivalently,over a filter plus AWGN channel. It is known that,

unless the source and the channel spectra are flat over thesameband, analog transmission - i.e., a simple scalar

gain (power matching) at the encoder - cannot achieve Shannon’s OPTAR(D) = C. Nevertheless, like we did for

the joint source-channel side-information problem, we canmerge the lattice precoding and the lattice “reversed”

DPCM schemes of Section VI to obtain a “semi-analog” system which is asymptotically optimal for large lattice

dimension. Furthermore, unlike the separation-based digital solution, thisAnalog Matchingsystem is robust to

channel SNR uncertainty for high SNR.

Consider the system in Figure 11, which consists of inter-symbol interference cancelation at the encoder (a

lattice precoder) and “reversed” source prediction at the decoder (lattice WZ of a colored source). Again, we

keep the coarse lattice components of the systems of SectionVI, and replace the fine quantization / constellation

lattices by direct mapping of the (scaled) source vector to the channel input. To simplify the exposition, we shall

restrict attention to the high-SNR / small distortion case.In this case the pre-coder subtracts the exact value of

the ISI modulo the coarse lattice, and transmits the result as is over the channel. The decoder predicts the next

source sample from the past reconstruction as if it was a clean replica of the source (i.e., neglecting the effect of
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the accumulated channel noise), and use it as side-information for WZ decoding. Like in Section VI, we assume

parallel processing or interleaving to allow for a multi-dimensional lattice inside the ISI/source prediction loops.

Under the high resolution assumption (almost “clean” source prediction at the decoder), it follows that the

resulting distortion (under the no-overload event) is as ifthe source innovationQ was transmitted over the zero

ISI channelY = X + Z. That is, the distortion is given byD = σ2
Q/(1 + P/N), as in the MLM system

for the joint-WZ/DPC setup in Section VII-A. Not surprisingly, this is also Shannon’s OPTA in this case. See

Kochmanet al [33] for the complete derivation, as well as for the general resulution/SNR case, and for the

robustness property. See [39] for the use ofcompandingto overcome the (severe) effect of overload for small

lattice dimension and high resolution conditions.

Why don’t we take the opposite route, i.e., merge source prediction (DPCM) at the encoder and channel

equalization (DFE) at the decoder? We cannot use forward-DPCM, because the encoder must use the “noisy”

source samples for prediction [32], [67], but here the noisecomes from nature (the physical channel). Likewise,

we cannot equalize the channel at the decoder like in a DFE-based system, because the transmitted signal is not

digital so the decoder cannot have an exact replica of past transmissions.

Bandwidth conversion:A case of special interest is that when the source and channelbandwidths do not

match. In this case we cannot carry on the “high resolution / high SNR” assumption above, because either the

source or the channel is sampled above its Nyquist rate.7 For example, if the source bandwidth is narrower than

the channel bandwidth, then at the decoder we must take into account the out-of-band (channel) noise seen by

the (strictly causal) predictor. Either way, the optimality of the Analog Matching system implies that it performs

bandwidth conversion- matching the source bandwidthBWs to the channel bandwidthBWc - while preserving

mutual information. This fact can be written as

(1 + SDR)BWs = (1 + SNR)BWc (62)

whereSDR = σ2
s/D is the unbiased signal to distortion ratio of the source, while SNR = P/N is the channel’s

signal to noise ratio. Note that here the bandwidth expansion ratio ρ = BWc/BWs is not necessarily an integer.

VIII. G AUSSIAN NETWORKS

There are many ways in which side-information paradigms canenter general multi-terminal networks. The

obvious cases are the broadcast channel, in which the joint encoder may view the transmission to one terminal

as side-information for the transmission to the other terminals. Similarly, in multi-terminal coding of correlated

sources, the joint decoder may view the reconstruction of one source as side information for the reconstruction

of the other sources. In both these cases, the side-information is concentrated in the “relevant” terminal in the

network. Indeed, in the QG case, it is easy to figure out how to replace the standard information theoretic “random

binning” technique, [14], [5], by a lattice-based solution. This solution uses the the lattice-WZ and lattice-DPC

7Without loss of generality, we assume here that the narrowerband is contained inside the wider one.
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schemes above as building blocks [66]. As in Chapter V, the main motivation for such a lattice scheme is the

complexity reduction (and perhaps the intuition) gained bya structured solution.

A more interesting situation, however, occurs whenside-information is distributedamong more than one

terminal. Surprisingly, it turns out that in some distributed linear network topologies, the lattice-based system

outperformsthe “random binning” solution. Moreover, in some cases it isin fact optimal! Apparently, the linearity

of the network in these scenarios favors linear binning.

A. The Korner-Marton Problem

We start with an interesting binary sources setup, the “two help one” problem of Figure 12, which motivates

our discussion. In a seminal paper from the late 70’s, Kornerand Marton [37] showed that if one wishes to

reconstruct the modulo-two sum of two correlated binary sources from their independent encodings, then linear

coding seems to be better than random coding. Specifically, the Korner-Marton setup consists of three binary

sourcesX,Y,Z, whereZ = X ⊕ Y , and the joint distribution ofX andY is symmetric withP (X 6= Y ) = θ.

The goal is to encode the sourcesX andY separately such thatZ can be reconstructed losslessly. Korner and

Marton showed that the rate sum required is at least

Rx + Ry ≥ 2H(Z), (63)

and furthermore, this rate sum can be achieved by a linear code: each encoder transmits the syndrome of the

observed source relative to a good linear binary code for a BSC with crossover probabilityθ.

In contrast, the “one help one” problem [2], [58] has a closedsingle-letter expression for the rate region, which

corresponds to a random binning coding scheme. Korner and Marton [37] generalize the expression of [2], [58]

to the “two help one” problem, and show that the minimal rate sum required using this expression is given by

Rx + Ry ≥ H(X,Y ). (64)

The region (64) corresponds to Slepian-Wolf encoding ofX andY , and it can also be derived from the Burger-

Tung achievable region [5] for distributed coding ofX and Y with one reconstruction̂Z under the distortion

measured(X,Y, Ẑ) , X ⊕ Y ⊕ Ẑ. Clearly, the region (64) is strictly contained in the Korner-Marton region

Rx + Ry ≥ 2H(Z) (63) (sinceH(X,Y ) = 1 + H(Z) > 2H(Z) for Z ∼ Bernoulli(θ), whereθ 6= 1
2 ).

Krithivasan and Pradhan [38] extended the Korner-Marton problem to the QG case. SupposeX and Y are

positively correlated Gaussian sources (say,Y = X +N whereN is independent ofX), and the decoder wants to

reconstruct their difference (N ) with some mean-squared distortionD. As they show, near optimal performance

can be achieved if each source is lattice-WZ encoded, where the coarse lattice - tuned to match the variance of

the difference (N ) - is identical at both encoders. The decoder subtracts the two encodings, modulo the coarse

lattice, to isolate the desired (quantized) difference signal.

Unlike the original “lossless” KM setup, the lattice schemedoes not match the “gini aided” outer bound; it

looses 3dB in distortion (half a bit in the rate sum) due to theaccumulation of the two (independent) quantization
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Dec.

Enc. X

Enc. Y

Enc. Z

ẐY

X

Z = X ⊕ Y

Fig. 12: The Korner-Marton configuration.

noises8. Yet this is still much better than a “standard” random binning solution, which (implicitly) encodes both

sourcesX andY just to transmit their difference.

B. The Dirty Multiple Access Channel

We next consider what seems to be the “dual” of the Korner-Marton problem; a generalization of the Gaussian

dirty-paper problem to a multiple access setup [48]. There are two additive interference signals, one known to

each transmitter but none to the receiver. See Figure 13. Therates achievable using Costas strategies (i.e. by a

random binning scheme induced by Costas auxiliary random variables) vanish in the limit when the interference

signals are strong. In contrast, it is shown by Philosofet al [48] that lattice strategies (lattice precoding) can

achieve positive rates independent of the interferences. Furthermore, they derive an outer bound for the capacity

region for arbitrary strong interferences, which is strictly smaller than the clean MAC capacity region. Lattice

strategies meet this outer bound for some combinations of noise variance and power constraints. In particular,

they are optimal in the limit of high SNR. Thus, the dirty MAC is another instance of a network setup, like

the Korner-Marton modulo-two sum problem, where linear coding is potentially better than random binning. See

also [49].

Enc. 1

Enc. 2

Dec.

S1

X1

X2

W1

W2

S2

Z

Y Ŵ1

Ŵ2

Fig. 13: Doubly dirty MAC.

8This is assuming independent dithering at the two terminals. A common dithering scheme is complicated to analize, but may reduce

this loss [36].
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C. Lattice Network Coding

In a standard packet switching network, nodes act as routers- they wish to find the best route for a packet

under the current conditions. If the inflow to a node is higherthan the output capacity, then some of the packets

need to be discarded. The idea of network coding is that a bottleneck node can “combine” together packets rather

than choose which one to pass and which one to discard. If the final destination gets enough “combinations”

(from different routes), then it can resolve the ambiguity and decode all the transmitted packets reliably.

The focus of most research on network coding was onlinear coding schemes. In theory, though, any information

preserving mapping at the nodes would work, as long as the network is lossless. However, when extending the

network coding idea tonoisy networks, the structure of the code is essential to avoidnoise accumulationand

loss of capacity.

relay 1

relay 2

relay 3

relay M

central 

decoder

bit pipes

user 1

user 2

user N

Z1

Z2

Z3

ZM

m1

m2

mN

m̂1
m̂2

m̂N

Fig. 14: A multi-relay multi-user network scenario.

Specifically, consider the Gaussian relay network proposedin [45], depicted in Figure 14, whereN users wish

to communicate with a destination (central decoder) through a layer ofM ≥ N relays. Each relay receives some

weighted (by the fading coefficients) linear combination ofthe transmitted signals corrupted by AWGN, i.e., each

relay is a Gaussian MAC channel. Thus, the different signalsat the relay input are already “combined” by the

network. However, unlike in a clean network, if the relay treats its input as an “analog signal” and digitize it,

then the noise will be forwarded to the final receiver as well.

It has been shown recently how to use nested lattice codes fornetwork coding in the presence of Gaussian

noise [56], [8], [45], [44]. The nested lattice structure allows the relay to decode an integer linear combination

of the codewords (a lattice point which is close to the received signal), thus remove the channel noise before

forwarding the decoded point to the final receiver. In [17] a general framework is presented, which allows to

treat non-integer combinations, as well as non-Gaussian noise and non-additive channels.

D. Back to Analog: Coherency Gain in Parallel Relaying

If the relays couldcoordinate, then we could get effectively a multi-antenna relay system. If the number of

relays is larger than the number of users, then such a multi-antenna relay could enhance the SNR by a factor of
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Fig. 15: The Parallel Relay Network.

M/N on the average. This enhancement - due to the coherent combining of transmitted signals at the relays -

is known as “array gain”. It becomes significant (even more than noise accumulation avoidance) ifM ≫ N or

if the SNR at the relays is low. Can we achieve this enhancement in a distributed setup?

Consider now the “fully physical” single-user parallel-relay network shown in Figure 15, where both the

section from the user to the relays and the section from the relays to the destination are Gaussian channels.

An interesting alternative for digital relaying in this setup is amplify and forward(A&F) [54], [25]: each relay

sends a scaled version of its received signal. Due to the linearity of the network, the transmitted signals are

coherently combined at the final receiver. Thus, A&F allows to achieve array gain, in spite of the the lack of

relay coordination, at the price of noise accumulation.

This method is, however, limited to the case of simple AWGN channels of identical bandwidth. In a recent

work, [35], the concept of A&F was extended to the case where the bandwidth (BW1) at the user-relays section

is different than the bandwidth (BW2) at the relays-destination section. The new technique - called rematch

and forward- is based on using an Analog Matching scheme (as in Section VII-B) at the transmitter to match

a codeword of bandwidthBW2 to a channel of bandwidthBW1. At the relay, the Analog Matching decoder

reconstructs the codeword of bandwidthBW2, while satisfying the mutual information preservation law(62).

The reconstructed codeword is then sent in an analog manner to the destination. This procedure exploits the full

bandwidth of both sections, while preserving the array gainas in A&F.
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